

FERMILAB-SLIDES-20-018-DI-LDRD-TD

Cryocooler conduction-cooled SRF cavities for particle accelerators

Ram C. Dhuley

Cockcroft Institute Seminar, 08 September 2020

Superconducting radiofrequency (SRF) technology has revolutionized particle accelerators for science

SRF benefits for large scientific machines

- ➤ High wall-plug efficiency
- ➢ High average beam power

Breakthroughs continue to ensue

- Niobium cavities achieve >50 MV/m in 2 K liquid helium
- Nb₃Sn cavities attain >20 MV/m in
 4.5 K liquid helium

SRF for basic science

SRF for industry & society

- > SRF relevant Industrial applications of particle accelerators?
- ➤ How to make SRF suitable for industrial settings?

IARC at Fermilab

IARC's mission: Partner with industry to exploit technology developed in the pursuit of science to create the next generation of industrial accelerators, products, and new applications.

Partners

- MWRD of Greater Chicago
- US Army Corps of Engineers (ERDC)
- Northern Illinois University
- Euclid Beamlabs
- General Atomics

In-house facilities

- Several 4 K cryocoolers, cryogenic test stands,
 500 W LHe refrigerator
- LLRF system, solid state RF power source (20 kW)
- 9 MeV, 1 kW electron accelerator (A2D2)

Contact

Dr. Mauricio Suarez

suarez@fnal.gov

Deputy Head of Technology Development and Industry Engagements

https://iarc.fnal.gov/

Outline

- Industrial applications and scope of SRF accelerators
- Cryocooler conduction-cooled SRF cavities
 - Development at Fermilab
 - First results
 - Ongoing R&D
- Fermilab's conduction-cooled SRF accelerator program
- New R&D facilitated by cryocooler-cooled SRF
- Summary and outlook

Industrial applications and scope of SRF accelerators

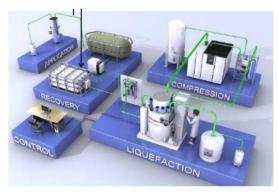
Electron beam radiation processing applications

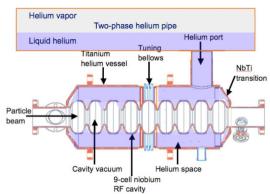
- Water/sludge/medical waste decontamination
- Flue gas cleanup
- Medical device sterilization
- Strengthening of asphalt pavements

Radiation processing requires:

- Beam energy: 0.5-10 MeV
- Beam power: >>100 kW

Industrial settings demand:


- Low capital and operating expense
- Robust, reliable, turnkey operation

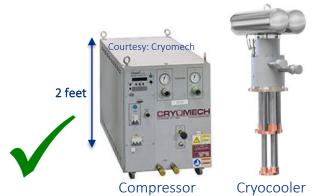

http://accelconf.web.cern.ch/AccelConf/napac2016/talks/thb3io02_talk.pdf

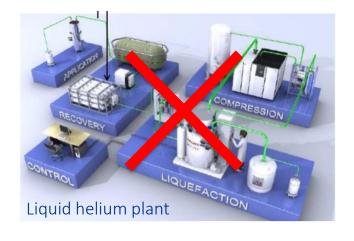
1-meter long SRF linac (niobium or Nb_3Sn cavities) operating at 10 MV/m can provide the required energy

Small SRF surface resistance enables <u>continuous wave (cw)</u> operation, leading to high average beam power

At present, SRF accelerators are designed to operate with complex liquid helium cryogenic systems!

Simplifying SRF cryogenics for industrial settings

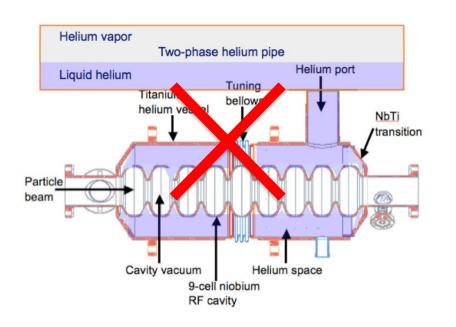

Nb₃Sn cavity dissipates ~6-8 W @ ~4.5 K

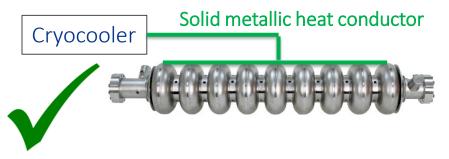

(1 m x 10 MV/m cw; 650 MHz/1.3 GHz)

Use commercial, off-the-shelf <u>4 K cryocoolers</u>

(helium plant not required)

Cryocoolers offer

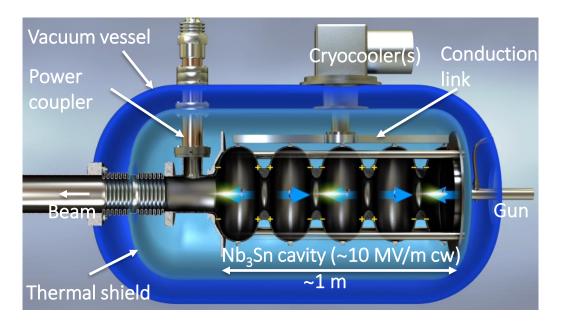

- Closed cycle cooling at ~45 K and ~4 K
- Compact, small footprint
- Reliability (MTBM > 2 years non-stop operation)
- Turnkey operation (no trained operator needed, turn ON/OFF with push of a button)



Simplifying SRF cryogenics for industrial settings

Remove cavity dissipation with thermal conduction (conduction cooling)

(conventional liquid helium bath not required)


Absence of cryogenic liquids

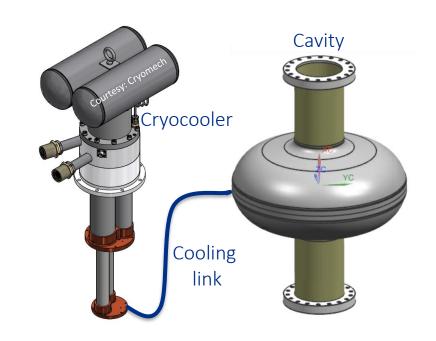
- Compact, simplified construction
- No pressure vessel safety concerns
- Facilitates deployment in remote locations

Concept of a cryocooler conduction-cooled SRF accelerator

R.D. Kephart, *SRF2015*, 2015. https://accelconf.web.cern.ch/srf2015/papers/frba03.pdf
Patents: US10390419B2, US10070509B2, US9642239B2

All cryogenics integrated into the module

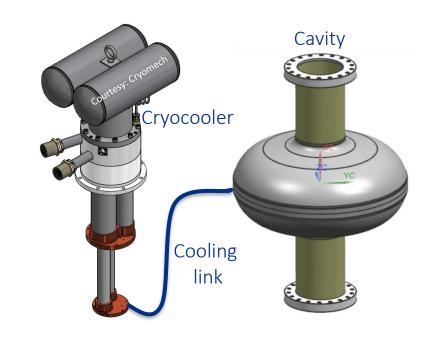
- Cryocooler 4 K stage cools the SRF cavity
- Cryocooler 45 K stage cools thermal shield/intercept
- Enclosed in a simple vacuum vessel


Conduction-cooled SRF cavity development at Fermilab

Goal: To demonstrate 10 MV/m cw on an SRF cavity with cryocooler conduction-cooling

Our choices:

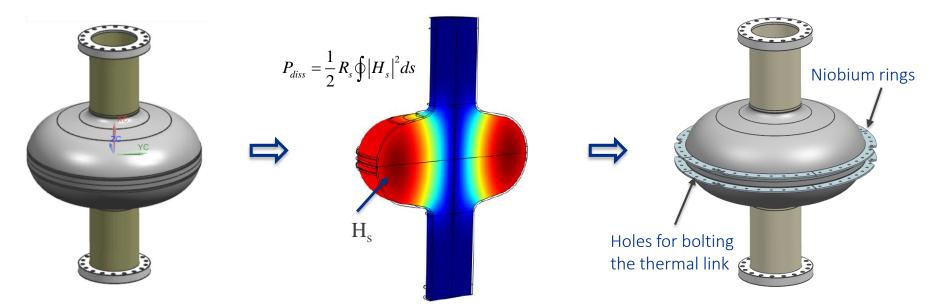
- Single cell 650 MHz, Nb₃Sn coated niobium cavity
- Cryomech PT420 cryocooler(2 W @ 4.2 K with 55 W @ 45 K)
- High purity aluminum for the conduction cooling link



Goal: To demonstrate 10 MV/m cw on an SRF cavity with cryocooler conduction-cooling

Technical challenges:

- Preparing the cavity for conduction cooling
- Managing thermal resistance (contact and bulk)
- Magnetic shielding of the cavity

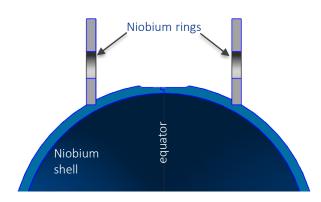


Cavity preparation for thermal link attachment

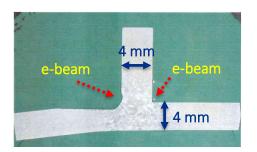
Need a thermal link attachment point on the niobium cavity shell

Dissipation is prominent near the equator

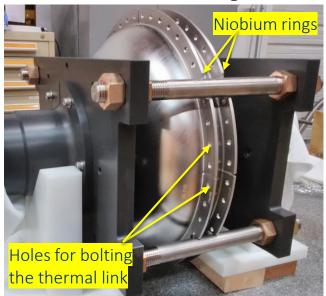
Solution: E-beam weld niobium cooling rings near the equator



Cavity preparation for thermal link attachment


R.C. Dhuley, Provisional Patent 63/023,811

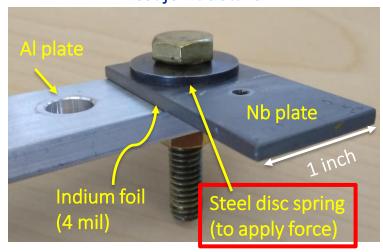
Joint design for e-beam welding

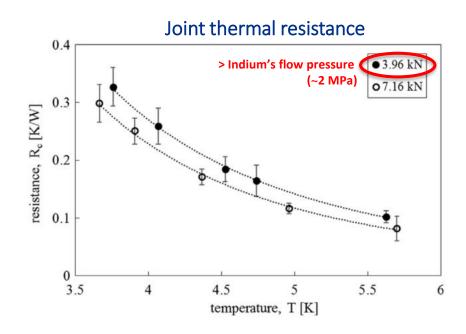


Weld development

- Full penetration for thermal conductivity
- Avoid weld beads on the RF surface

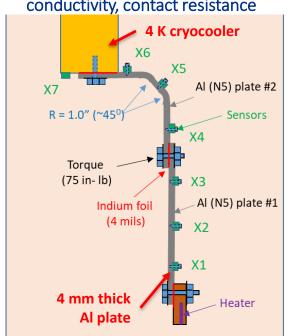
Single cell cavity ready for conduction cooling

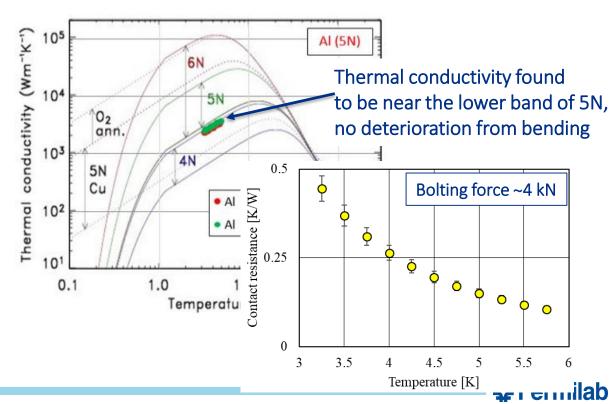



Characterization of thermal resistance

1. Cavity-link (niobium-aluminum) bolted thermal contacts

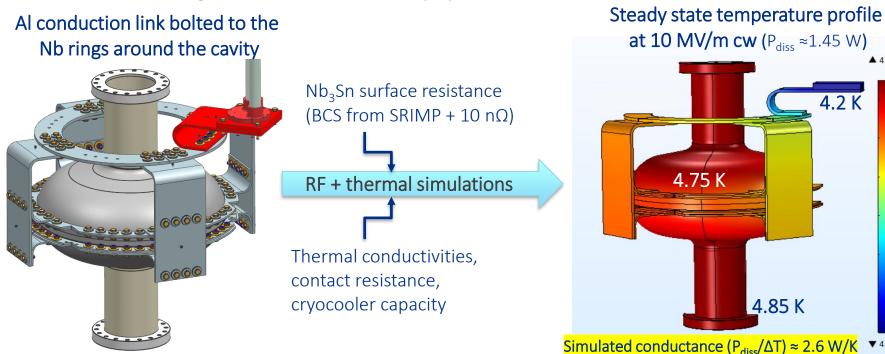
R.C. Dhuley, M.I. Geelhoed, J.C.T. Thangaraj, *Cryogenics*, 2018. https://doi.org/10.1016/j.cryogenics.2018.06.003


Selected design: 4 mil indium, ~4 kN force



Characterization of thermal resistance

2. Thermal characterization of high purity aluminum

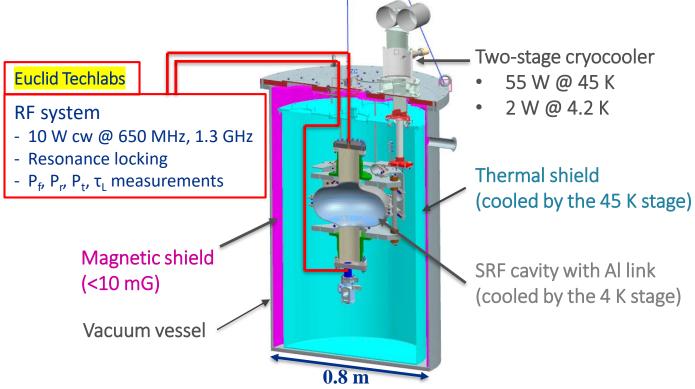

Setup for measuring 4 K thermal conductivity, contact resistance

Design of the conduction link design

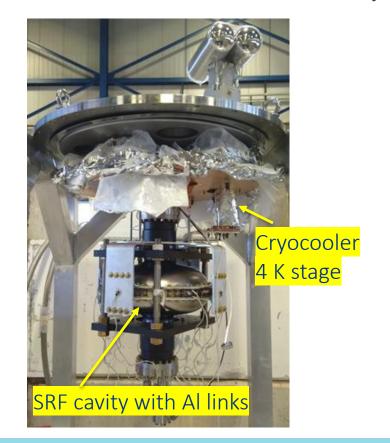
3. Mechanical design; verification *via* multiphysics simulations

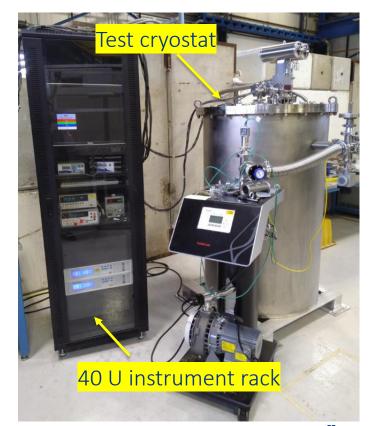
J. Thompson and R.C. Dhuley, 2019. https://doi.org/10.2172/1546003
R.C. Dhuley et al., IEEE Trans. Appl. Supercond., 2019. https://doi.org/10.1109/TASC.2019.2901252

4.7


4.6

4.5


4.4

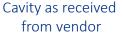

Conduction-cooled SRF cavity measurement setup at Fermilab

R.C. Dhuley et al., IOP Conf. Ser.: Mat. Sci. Eng., 2020. https://doi.org/10.1088/1757-899X/755/1/012136

Conduction-cooled SRF cavity measurement setup at Fermilab

19

Cavity processing and test sequence


Niobium cavity with conduction rings

RF check, bulk EP, 800 °C bake, light EP, HPR

2 K VTS test of niobium cavity (check 10 MV/m cw)

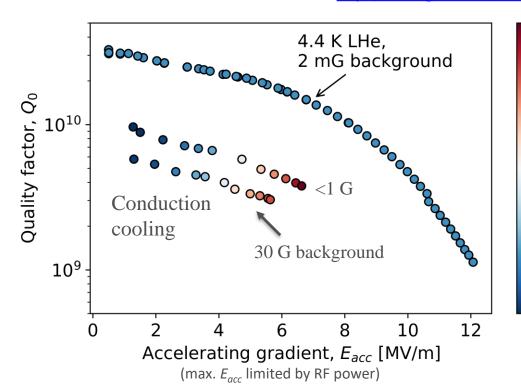
Cavity on HPR tool

Coat with Nb₃Sn

4.4 K VTS test of Nb₃Sn cavity (baseline test)

Warm-up, connect thermal link

Conduction-cooled tests of Nb₃Sn cavity


Cavity dressed with Al link

First results for the conduction-cooled Nb₃Sn cavity

R. Dhuley, S. Posen, M. Geelhoed, O. Prokofiev, J. Thangaraj, *Supercond. Sci. Technol.*, 2020. https://doi.org/10.1088/1361-6668/ab82f0

G Cavity temperature

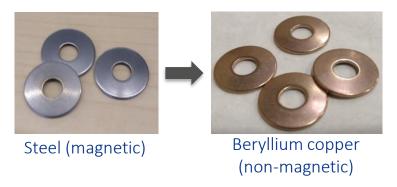
Fermilab VTS baseline with 4.5 K LHe $Q_0 = 3x10^{10}$ at $E_{acc} = 1$ MV/m

-
$$\max E_{acc} = 12 \text{ MV/m}$$

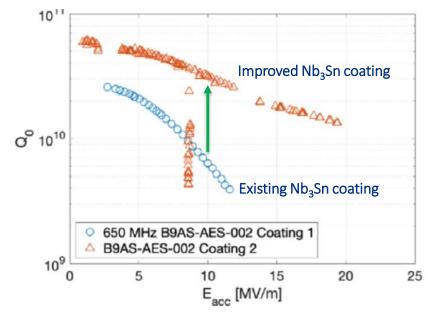
Conduction cooling

- $Q_0 = 5x10^9$ at $E_{acc} = 1 \text{ MV/m}$
- $max E_{acc} = 5.5 MV/m$

disc springs ~30 G led to large flux trapping


Conduction cooling with <1 G disc springs

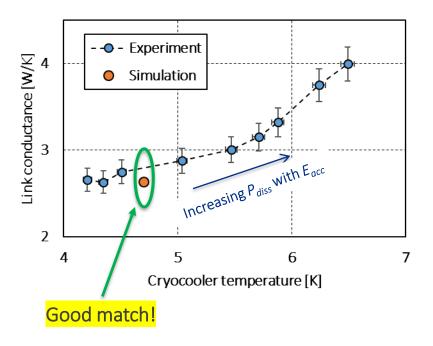
- $Q_0 = 1 \times 10^{10}$ at $E_{acc} = 1$ MV/m
- $max E_{gcc} = 6.6 \text{ MV/m}$


Ongoing research to reach 10 MV/m

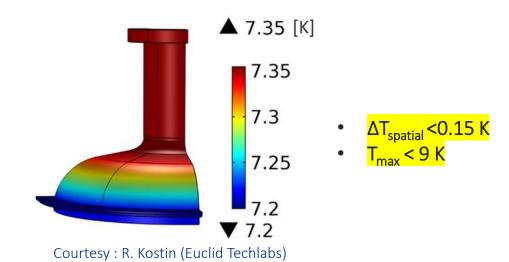
1. Improve magnetic hygiene to reduce trapped flux

2. Flux expulsion by slow/fast cooldown using cryocooler

3. Improve Nb₃Sn coating recipe


S. Posen et al., https://accelconf.web.cern.ch/srf2019/papers/thfub1.pdf

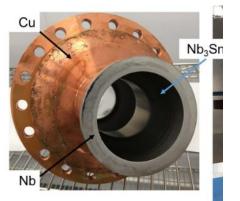
22


Conduction link performance, cavity thermal stability

Comparison of measured and simulated link thermal conductance

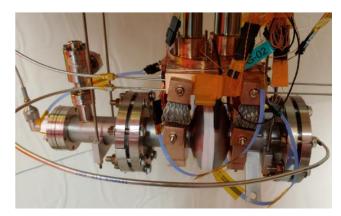
Computed cavity surface temperature at steady state with 6.6 MV/m cw

- Ring temperature = 7.2 K (boundary condition)
- RF dissipation = 4 W (boundary condition)


A new frontier in SRF is simplifying the cooling methods!

Fermilab

- 650 MHz
- welded niobium rings


Jefferson Lab

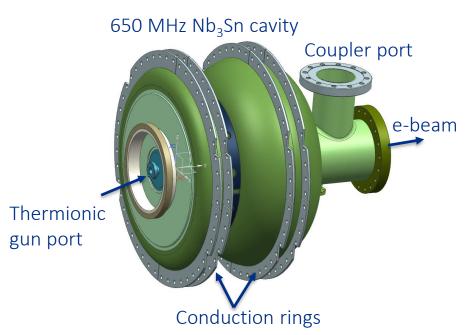
https://doi.org/10.1088/1757-899X/755/1/012136

- 1.5 GHz
- Cold sprayed + electrodeposited copper

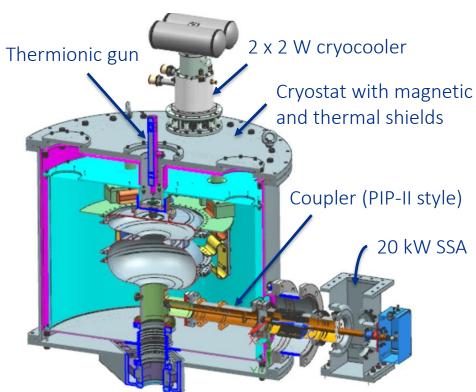
Cornell University

https://arxiv.org/abs/2002.11755

- 2.6 GHz
- Copper clamps


24

Conduction-cooled SRF accelerator program at Fermilab



Prototype electron accelerator development (1.6 MeV, 20 kW)

Supported by US Army Corps of Engineers (ERDC)

 $E_{acc} \approx 4.7 \text{ MV/m}$; Cryo load $\approx 3.8 \text{ W} @ 4.5 \text{ K}$

Design and economics studies of industrial scale SRF electron accelerators (10 MeV, >>100 kW)

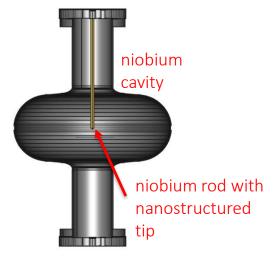
Supported by US Dept. of Energy HEP Accelerator Stewardship Program

Phase (year) / Fermilab PI	Activity	Stewardship partner
I (2016-17) / R.D. Kephart	Conceptual design of a 250 kW and economic analysis of a 1000 kW facility	MWRD of Greater Chicago
II (2017-18) / J.C.T. Thangaraj	Conceptual design of a 1000 kW module and economic analysis of a 10000 kW facility	
III (2019-in progress) / R.C. Dhuley	Practical cryogenic design and cost analysis of a 1000 kW module	GENERAL ATOMICS

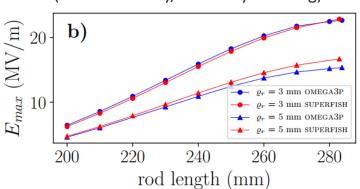
Design reports available at: https://iarc.fnal.gov/publications/

27

New R&D facilitated by cryocooler-cooled SRF cavities



Development of SRF based field emission sources


PI: Dr. Philippe Piot (NIU/Argonne National Lab.)

NIU-Fermilab collaboration

- field emission cathode with nanostructured surface located in high e-field region of an SRF cavity
- use cw operation to produce high repetition rate field emission (high I_{avg})

Cathode surface e-field (650 MHz cavity, 1.6 W cryo-cooling)

Mohsen et al., http://accelconf.web.cern.ch/ipac2019/papers/tupts083.pdf



Cryocooled based standalone SRF modules

Cryocooled SRF has already been picked up by the particle accelerator industry!

S. Kutsaev *et al.*, https://ieeexplore.ieee.org/document/9119112/

A SRF QWR cooled by pulse tube coolers for beamline upgrade at Argonne Natl. Lab.

Summary and outlook

Cryocooler conduction cooling offers simple, reliable cryogenics for developing industrial SRF e-beam accelerators

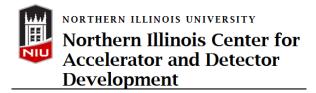
Conduction-cooled SRF R&D at Fermilab

- First demonstration >6.5 MV/m cw on a 650 MHz Nb₃Sn coated cavity
- Prototype development and high-power accelerator design in progress

Access to SRF without full stack helium cryogenic systems

- University groups, industries can embark on in-house SRF R&D
- Standalone compact cryomodules for new SRF installations/upgrades

Acknowledgement


This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

- Accelerator design studies: R.C. Dhuley DOE HEP Accelerator Stewardship Award
- Conduction-cooled SRF demonstration: J.C.T. Thangaraj, Fermilab LDRD
- Nb₃Sn development: S. Posen Fermilab LDRD, S. Posen DOE Early Career Award
- Compact SRF accelerator development: US Army Corps of Engineers (ERDC)

32