

Conventional Magnets for Accelerators Lecture 1

Ben Shepherd Magnetics and Radiation Sources Group ASTeC Daresbury Laboratory

ben.shepherd@stfc.ac.uk

Course Philosophy

An overview of magnet technology in particle accelerators, for **room temperature**, **static** (dc) **electromagnets**, and basic concepts on the use of **permanent magnets** (PMs).

Not covered: superconducting magnet technology.

Contents – lectures 1 and 2

• DC Magnets: design and construction

Introduction

- Nomenclature
- Dipole, quadrupole and sextupole magnets
- 'Higher order' magnets

Magnetostatics in free space (no ferromagnetic materials or currents)

- Maxwell's 2 magnetostatic equations
- Solutions in two dimensions with scalar potential (no currents)
- Cylindrical harmonic in two dimensions (trigonometric formulation)
- Field lines and potential for dipole, quadrupole, sextupole
- Significance of vector potential in 2D

Contents – lectures 1 and 2

• Introducing ferromagnetic poles

- Ideal pole shapes for dipole, quad and sextupole
- Field harmonics-symmetry constraints and significance
- 'Forbidden' harmonics resulting from assembly asymmetries

• The introduction of currents

- Ampere-turns in dipole, quad and sextupole
- Coil economic optimisation-capital/running costs

Summary of the use of permanent magnets (PMs)

- Remnant fields and coercivity
- Behaviour and application of PMs

Contents – lectures 1 and 2

• The magnetic circuit

- Steel requirements: permeability and coercivity
- Backleg and coil geometry: 'C', 'H' and 'window frame' designs
- Classical solution to end and side geometries the Rogowsky rolloff

• Magnet design using FEA software

- FEA techniques and codes Opera 2D, Opera 3D
- Judgement of magnet suitability in design
- Magnet ends computation and design

Some examples of magnet engineering

DC Magnets INTRODUCTION

Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 20166

Units

• SI Units

Variable	Unit
Force, <i>F</i>	Newton (N)
Charge, <i>q</i>	Coulomb (C)
Flux density, <i>B</i> (commonly referred to as 'field')	Tesla (T) or Gauss (G) 1 T = 10,000 G
Magnetic field, <i>H</i> (magnetomotive force produced by electric currents)	Amp/metre (A/m)
Current, I	Ampere (A)
Energy, <i>E</i>	Joule (J)

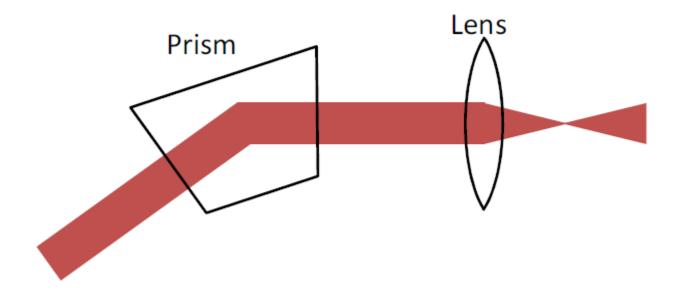
- Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{T.m/A}$
- Charge of 1 electron e = −1.6 × 10⁻¹⁹C
 > 1 eV = 1.6x10⁻¹⁹ J

Magnetic Fields Flux Density

Value	Item
0.1 - 1.0 pT	human brain magnetic field
24 μΤ	strength of magnetic tape near tape head
31-58 μT	strength of Earth's magnetic field at 0° latitude (on the equator)
0.5 mT	the suggested exposure limit for cardiac pacemakers by American Conference of
	Governmental Industrial Hygienists (ACGIH)
5 mT	the strength of a typical refrigerator magnet
0.15 T	the magnetic field strength of a sunspot
1 T to 2.4 T	coil gap of a typical loudspeaker magnet
1.25 T	strength of a modern neodymium-iron-boron (Nd ₂ Fe ₁₄ B) rare earth magnet.
1.5 T to 3 T	strength of medical magnetic resonance imaging systems in practice, experimentally up to 8 T
9.4 T	modern high resolution research magnetic resonance imaging system
11.7 T	field strength of a 500 MHz NMR spectrometer
16 T	strength used to levitate a frog
36.2 T	strongest continuous magnetic field produced by non-superconductive resistive magnet
45 T	strongest continuous magnetic field yet produced in a laboratory (Florida State University's National High Magnetic Field
	Laboratory in Tallahassee, USA)
100.75 T	strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National High Magnetic Field Laboratory,
	Los Alamos National Laboratory, USA)
730 T	strongest pulsed magnetic field yet obtained in a laboratory, destroying the used equipment, but not the laboratory itself
	(Institute for Solid State Physics, Tokyo)
2.8 kT	strongest (pulsed) magnetic field ever obtained (with explosives) in a laboratory (VNIIEF in Sarov, Russia, 1998)
1 to 100 MT	strength of a neutron star
0.1 to 100 GT	strength of a magnetar

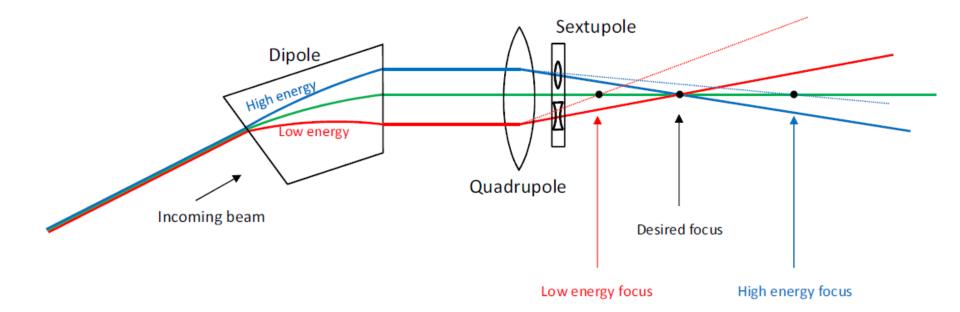
Why magnets?

Analogy with optics



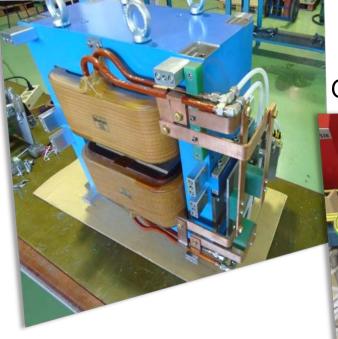
Magnets are like lenses...

... sort of



Magnet types

Dipoles to bend the beam



Quadrupoles to focus it

Sextupoles to correct chromaticity

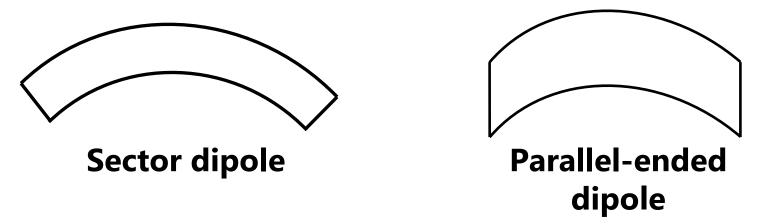
Ben Shepherd, ASTeC

Cockcroft Institute: Conventional Magne

Magnets - dipoles

To bend the beam uniformly, dipoles need to produce a field that is constant across the aperture.

But at the ends they can be either:

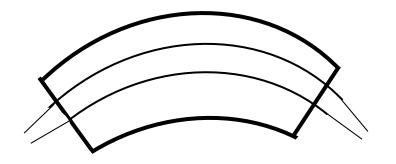


They have different focusing effect on the beam; (their curved nature is to save material and has no effect on beam focusing).

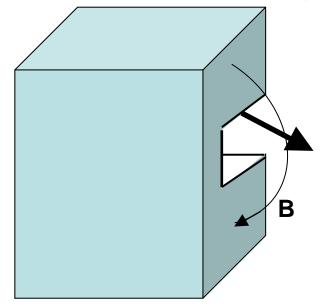
Dipole end focusing

 \rightarrow

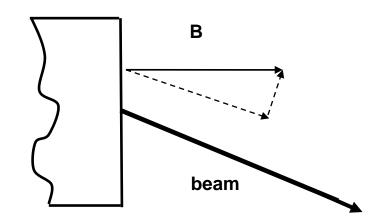
Sector dipoles focus horizontally



The end field in a parallel ended dipole focuses vertically



Off the vertical centre line, the field component normal to the beam direction produces a vertical focusing force.



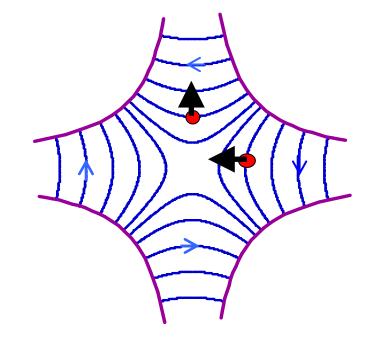
Magnets - quadrupoles

Quadrupoles produce a linear field variation across the beam.

Field is **zero** at the 'magnetic centre' so that 'on-axis' beam is not bent.

Note: beam that is horizontally focused is vertically defocused.

These are 'upright' quadrupoles.

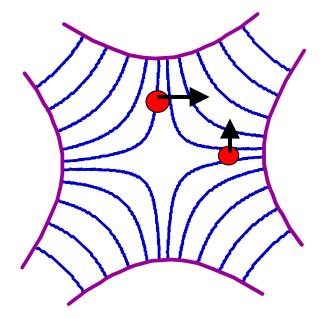


Skew Quadrupoles

Beam that has **horizontal** displacement (but **not** vertical) is deflected **vertically**.

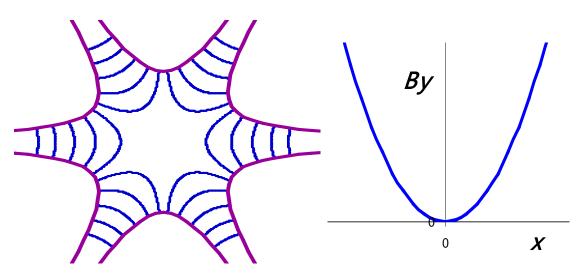
Horizontally centred beam with **vertical** displacement is deflected **horizontally**.

So skew quadrupoles **couple** horizontal and vertical transverse oscillations.



Sextupoles

In a **sextupole**, the field varies as the **square** of the displacement.



- Off-momentum particles are incorrectly focused in quadrupoles (e.g., high momentum particles with greater rigidity are underfocused), so transverse oscillation frequencies are modified – chromaticity.
- But off momentum particles circulate with a horizontal displacement (high momentum particles at larger *x*)
- So positive sextupole field corrects this effect can reduce chromaticity to 0.

Higher order magnets

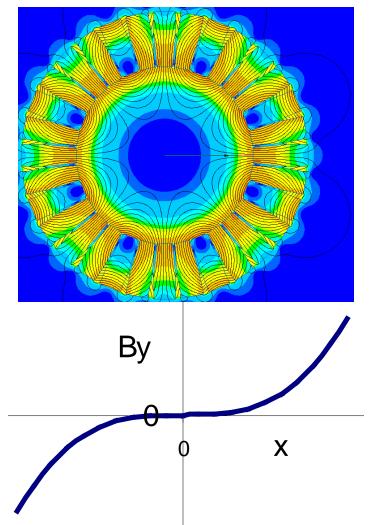
e.g. – Octupoles:

Effect?

$$B_y \propto x^3$$

Octupole field induces **Landau damping**:

- Introduces tune-spread as a function of oscillation amplitude
- De-coheres the oscillations
- Reduces coupling



Describing the field

MAGNETOSTATICS IN FREE SPACE

Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201618

No currents, no steel - Maxwell's static equations in free space

In the absence of currents: Then we can put: So that: $\nabla \cdot B = 0$ $\nabla \times H = j$ j = 0 $B = -\nabla \phi$ $\nabla^2 \phi = 0$ (Laplace's equation)

Taking the two dimensional case (i.e. constant in the z direction) and solving for polar coordinates (r, θ):

$$\phi = (E + F \theta)(G + H \ln r) + \sum_{n=1}^{\infty} J_n r^n \cos n\theta + K_n r^n \sin n\theta + L_n r^{-n} \cos n\theta + M_n r^{-n} \sin n\theta$$

In practical situations

The scalar potential simplifies to:

$$\Phi = \sum_{n=1}^{\infty} J_n r^n \cos n\theta + K_n r^n \sin n\theta$$

with *n* integral and J_n , K_n a function of geometry.

Giving components of flux density:

$$B_r = -\sum_{\substack{n=1\\\infty}}^{\infty} nJ_n r^{n-1} \cos n\theta + nK_n r^{n-1} \sin n\theta$$
$$B_\theta = -\sum_{\substack{n=1\\n=1}}^{\infty} -nJ_n r^{n-1} \sin n\theta + nK_n r^{n-1} \cos n\theta$$

Ben Shepherd, ASTeC

Physical significance

This is an infinite series of cylindrical harmonics; they define the allowed distributions of B in 2 dimensions in the absence of currents within the domain of (r, θ) .

Distributions not given by above are not physically realisable.

Coefficients J_n , K_n are determined by geometry (remote iron boundaries and current sources).

In Cartesian Coordinates

To obtain these equations in Cartesian coordinates, expand the equations for ϕ and differentiate to obtain flux densities

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\sin 2\theta = 2\sin \theta \cos \theta$

 $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$ $\sin 3\theta = 3\sin \theta \cos^2 \theta - \sin^3 \theta$

$$\cos 4\theta = \cos^4 \theta + \sin^4 \theta - 6\cos^2 \theta \sin^2 \theta$$
$$\sin 4\theta = 4\sin \theta \cos^3 \theta - 4\sin^3 \theta \cos \theta$$

etc (messy!);

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $B_x = -\frac{\partial \phi}{\partial x}$ $B_y = -\frac{\partial \phi}{\partial y}$

Ben Shepherd, ASTeC

Cockcroft Institute: Conventional Magnets, Autumn 2016 22

n = 1: Dipole field

Cylindrical:

 $B_r = J_1 \cos \theta + K_1 \sin \theta$ $B_\theta = -J_1 \sin \theta + K_1 \cos \theta$ $\phi = J_1 r \cos \theta + K_1 r \sin \theta$

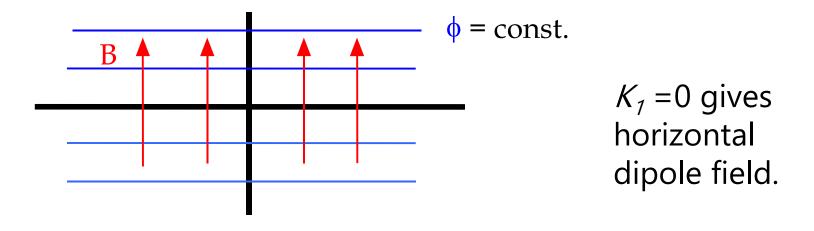
Cartesian:

$$B_x = J_1$$

$$B_y = K_1$$

$$\phi = J_1 x + K_1 y$$

So, $J_1 = 0$ gives vertical dipole field:



n = 2: Quadrupole field

Cylindrical:

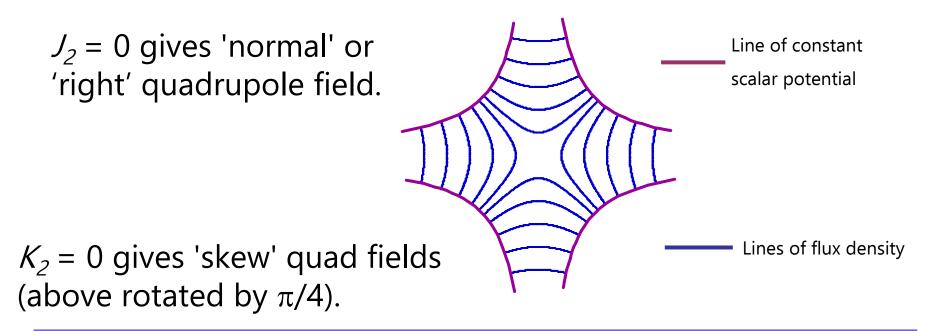
 $B_r = 2J_2r\cos 2\theta + 2K_2r\sin 2\theta$ $B_\theta = -2J_2r\sin 2\theta + 2K_2r\cos 2\theta$ $\phi = J_2r^2\cos 2\theta + K_2r^2\sin 2\theta$

Cartesian:

$$B_{x} = 2(J_{2}x + K_{2}y)$$

$$B_{y} = 2(K_{2}x - J_{2}y)$$

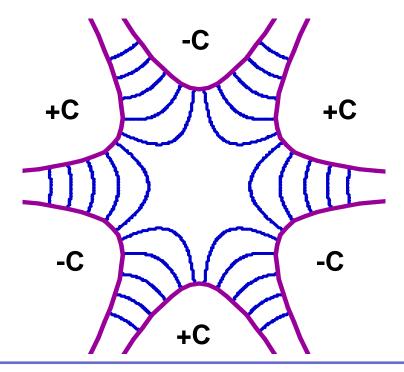
$$\phi = J_{2}(x^{2} - y^{2}) + 2K_{2}xy$$



n = 3: Sextupole field

Cartesian:

 $B_r = 3J_3r^2\cos 3\theta + 3K_3r^2\sin 3\theta$ $B_\theta = -3J_3r^2\sin 3\theta + 3K_3r^2\cos 3\theta$ $\phi = J_3r^3\cos 3\theta + K_3r^3\sin 3\theta$

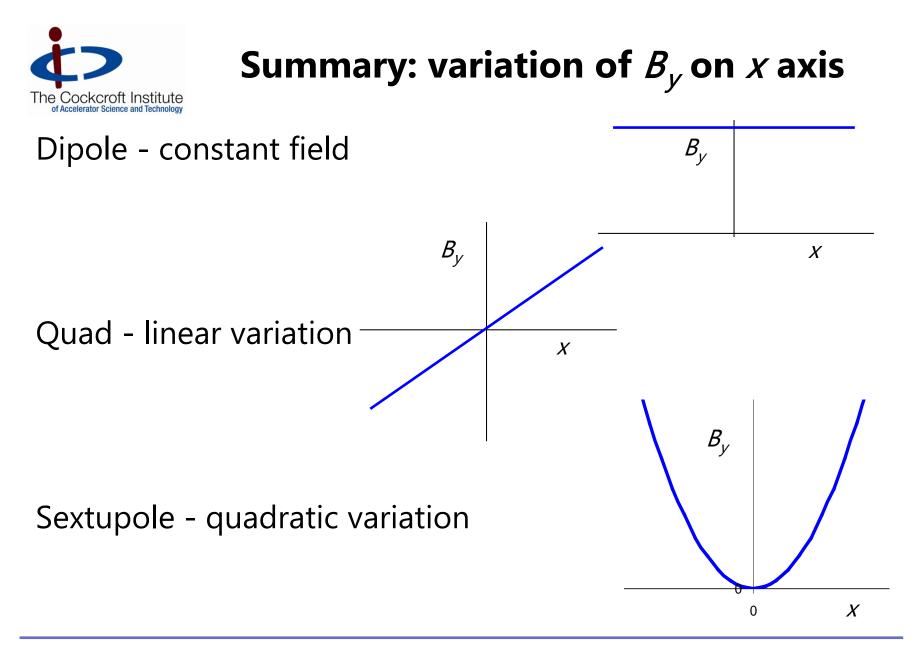


$B_x = 3(J_3(x^2 - y^2) + 2K_3xy)$ $B_y = 3(K_2(x^2 - y^2) - 2J_3xy)$ $\phi = J_3(x^3 - 3y^2x) + K_3(3yx^2 - y^3)$

 $J_3 = 0$ giving 'normal' or 'right' sextupole field.

Line of constant scalar potential

Lines of flux density



Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201626

Alternative notation (most lattice codes)

$$B(x) = B\rho \sum_{n=0}^{\infty} \frac{k_n x^n}{n!}$$

Magnet strengths are specified by the value of k_n (normalised to the beam rigidity)

order *n* of *k* is different to the 'standard' notation:

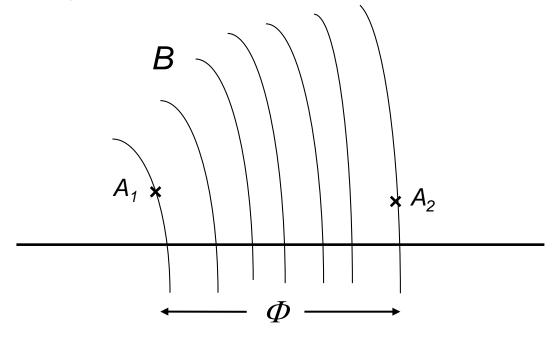
<i>k</i> has units:	dipole is quad is	n = 0 n = 1 etc.
	<i>k_o</i> (dipole) <i>k₁</i> (quadrupole)	m⁻¹ m⁻²

Significance of vector potential in 2D

We have:	$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$ (A is vector potential)			
and	$\nabla A = 0$			
Expanding:	$B = \nabla imes A$			
	$= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\mathbf{i} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\mathbf{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\mathbf{k}$			
where	<i>i, j, k</i> are unit vectors in <i>x, y, z</i> .			
In 2 dimens	ions $B_z = 0$ and $\partial / \partial z = 0$			
So	$A_x = A_y = 0$			
and	$\boldsymbol{B} = \frac{\partial A_z}{\partial y} \boldsymbol{i} - \frac{\partial A_z}{\partial x} \boldsymbol{j}$			
A is in the <i>z</i> direction, normal to the 2D problem.				
Note:	$\nabla \cdot B = \frac{\partial^2 A_z}{\partial x \partial y} - \frac{\partial^2 A_z}{\partial x \partial y} = 0$			

Total flux between two points $\propto \Delta A$

In a two-dimensional problem the magnetic flux between two points is proportional to the difference between the vector potentials at those points.



Proof on next slide.

Ben Shepherd, ASTeC

 $\phi \propto (A_2 - A_1)$

Proof

Consider a rectangular closed path, length λ in z direction at (x_1, y_1) and (x_2, y_2) ; apply Stokes' theorem:

$$\phi = \iint B. dS = \iint (\nabla \times A). dS = \oint A. ds$$

But *A* is exclusively in the *z* direction, and is constant in this direction. So:

$$\int A. dS = \lambda [A(x_1, y_1) - A(x_2, y_2)] ds$$

$$\phi = \lambda[A(x_1, y_1) - A(x_2, y_2)]$$

Ben Shepherd, ASTeC

Going from fields to magnets

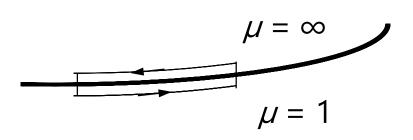
STEEL POLES AND YOKES

Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201631

What is the perfect pole shape?

What is the ideal pole shape?

• Flux is normal to a ferromagnetic surface with infinite μ .



curl H = 0

therefore $\int H.ds = 0$

in steel H = 0

therefore parallel Hair = 0

therefore *B* is normal to surface.

- Flux is normal to lines of scalar potential: $B = -\nabla \phi$
- So the lines of scalar potential are the perfect pole shapes! (but these are infinitely long!)

Equations for the ideal pole

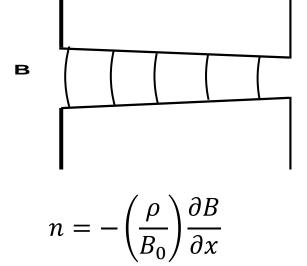
Equations for Ideal (infinite) poles; $(J_n = 0)$ for **normal** (ie not skew) fields: **Dipole:** $y = \pm \frac{g}{2}$ (g is interpole gap) **Quadrupole:** $xy = \pm \frac{R^2}{2}$ **Sextupole:** $3x^2y - y^3 = \pm R^3$

Combined function (CF) magnets

'Combined Function Magnets' - often dipole and quadrupole field combined (but see next-but-one slide):

A quadrupole magnet with physical centre shifted from magnetic centre.

Characterised by 'field index' *n*, positive or negative depending on direction of gradient do not confuse with harmonic *n*!

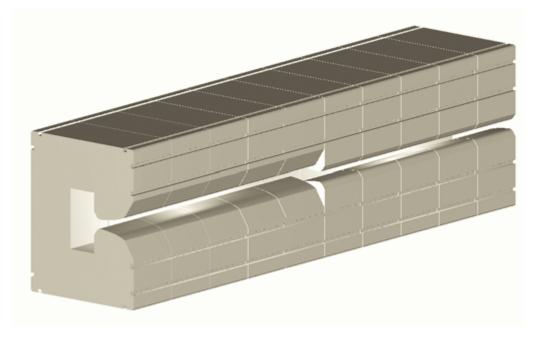


 ρ is radius of curvature of the beam

 B_o is central dipole field

Combined Function Magnets

CERN Proton Synchrotron



	ROXIE ^{±0}
	2001190

***********//// /*********************	+ 1 6 4
**************************************	******
**************************************	******
//	*******
10000001101111111111000000000000000000	111110-
110-22110111111110000002211	11111-2
111-2211/21111111111/20002221111	11111-1
*******************************	11111-2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11111.
second still a succession	
TTTTTTTTTTTTTTTT	
111111111111 <u>1111</u> 11111111111111111111	******
ANNALIN ( 1111 2 11/1//-1111	******
	******
×*************************************	+++++//
I F F A X A A A A A A A A A A A A A A A A	11111-6
1112251121111111111122222001111	11111-1
11220/112/11/11/1222000000///	11111-1
122223/12/11/11/122222223/	11111
**************************************	111114-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	******
**************************************	*****
	ever 1 de
	******

**Ben Shepherd, ASTeC** 



# **Combined function geometry**

### Combined function (dipole & quadrupole) magnet:

beam is at physical centre flux density at beam  $B_0$  $\delta B$ gradient at beam δx magnetic centre is at B and X  $\cap$ separation magnetic to physical centre  $X_0$ X  $X_0$ magnetic centre, physical centre X = 0x = 0

Ben Shepherd, ASTeC

# Pole of a CF dipole & quad magnet

#### **Ref geometry as on previous slide:**

Flux density at beam centre: $B_0$  [T]Gradient across beam:Displacement of beam from quadrupole centre:'Local' displacement from beam centre:So:

And

Quadrupole equation:

#### So pole equation ref beam centre:



#### Adjust R to satisfy beam dimensions.



## **Other combined function magnets**

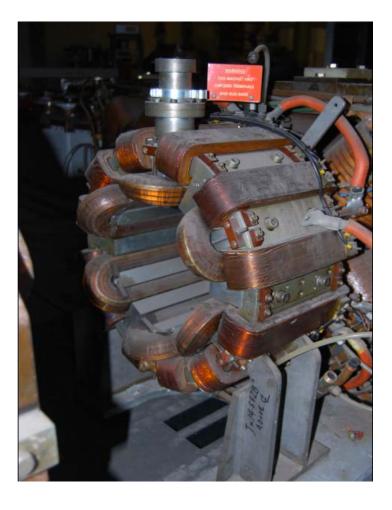
#### Other combinations:

- dipole, quadrupole and sextupole
- dipole & sextupole (for chromaticity control)
- dipole, skew quad, sextupole, octupole (at DL)

Generated by

- pole shapes given by sum of correct scalar potentials
  - amplitudes built into pole geometry not variable
- multiple coils mounted on the yoke
  - amplitudes independently varied by coil currents

## The SRS multipole magnet



#### Could develop:

- vertical dipole
- horizontal dipole
- upright quad
- skew quad
- sextupole
- octupole
- others

**Ben Shepherd, ASTeC** 

ne Cockcroft Institute

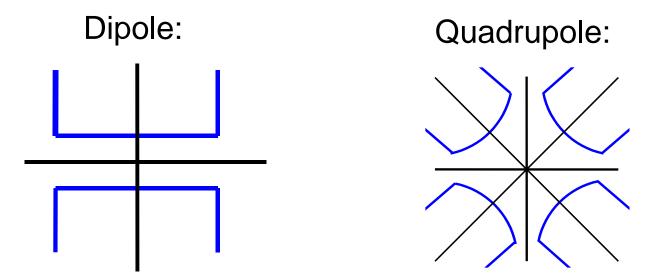


### **The Practical Pole**

Practically, poles are finite, **introducing errors**;

these appear as higher harmonics which degrade the field distribution.

However, the iron geometries have certain symmetries that **restrict** the nature of these errors.



**Ben Shepherd, ASTeC** 

Cockcroft Institute: Conventional Magnets, Autumn 2016 40



### **Possible symmetries**

#### Lines of symmetry:

DipoleQuadPole orientationy = 0x = 0determines whether poley = 0is normal or skew.

Additional symmetry x = 0  $y = \pm x$ 

imposed by pole edges.

The additional constraints imposed by the symmetrical pole edges limits the values of *n* that have non-zero coefficients



## **Dipole symmetries**

**Type** Pole orientation

Pole edges



$$\phi(\theta) = -\phi(-\theta)$$

$$\phi(\theta) = \phi(\pi - \theta)$$

#### Constraint

all  $J_n = 0$ 

$$K_n$$
 non-zero  
only for  
 $n = 1, 3, 5,$  etc.



So, for a fully symmetric dipole, only 6, 10, 14 etc. pole errors can be present.



### **Quadrupole symmetries**

Туре

Pole orientation

Symmetry Constraint

 $\phi(\theta) = -\phi(-\theta) \qquad \text{All } J_n = 0$  $\phi(\theta) = -\phi(\pi - \theta) \qquad K_n = 0 \text{ for all odd } n$ 

Pole edges

$$\phi(\theta) = \phi(\frac{\pi}{2} - \theta) \qquad K_n \text{ non-zero} \\ \text{for } n = 2, 6, 10, \text{ etc.}$$

So, for a fully symmetric quadrupole, only 12, 20, 28 etc. pole errors can be present.



### **Sextupole symmetries**

Туре

Pole orientation

Symmetry

Constraint

 $\begin{aligned} \varphi(\theta) &= -\varphi(-\theta) \\ \varphi(\theta) &= -\varphi(\frac{2\pi}{3} - \theta) \\ \varphi(\theta) &= -\varphi(\frac{4\pi}{3} - \theta) \end{aligned}$ 

All  $J_n = 0$  $K_n = 0$  where *n is* **not** a multiple of 3

Pole edges  $\phi(\theta) = \phi(\frac{\pi}{3} - \theta)$   $K_n$  non-zero only for n = 3, 9, 15, etc.

So, for a fully symmetric sextupole, only 18, 30, 42 etc. pole errors can be present.



## **Summary - 'Allowed' Harmonics**

Summary of 'allowed harmonics' in **fully symmetric** magnets:

Fundamental geometry	'Allowed' harmonics
Dipole, <i>n</i> = 1	<i>n</i> = 3, 5, 7,
	(6 pole, 10 pole, etc.)
Quadrupole, $n = 2$	<i>n</i> = 6, 10, 14,
	(12 pole, 20 pole, etc.)
Sextupole, $n = 3$	<i>n</i> = 9, 15, 21,
	(18 pole, 30 pole, etc.)
Octupole, $n = 4$	<i>n</i> = 12, 20, 28,
	(24 pole, 40 pole, etc.)

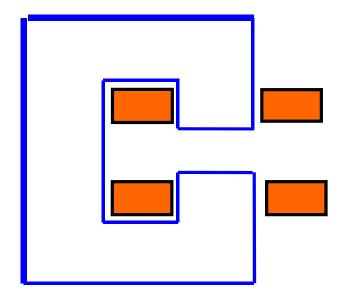
Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201645



#### Asymmetries generating harmonics (i)

# Two sources of asymmetry generate 'forbidden' harmonics:

i) magnetic asymmetries - significant at low permeability:



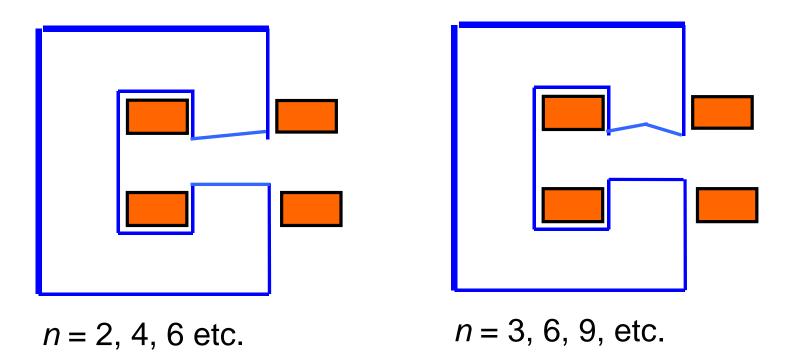
e.g. C core dipole not completely symmetrical about pole centre, but negligible effect with high permeability.

Generates n = 2,4,6, etc.

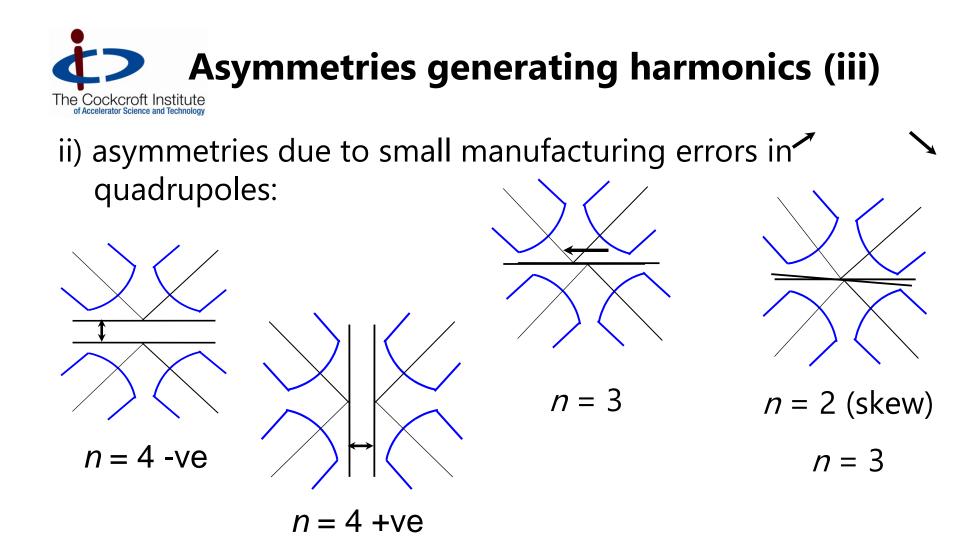


# Asymmetries generating harmonics (ii)

ii) asymmetries due to small manufacturing errors in dipoles:



Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201647



These errors are bigger than the finite  $\mu$  type; can seriously affect machine behaviour and must be controlled.



# Current Affairs FIELDS DUE TO COILS

Ben Shepherd, ASTeCCockcroft Institute: Conventional Magnets, Autumn 201649



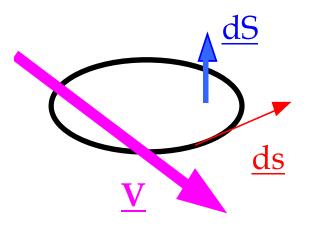
### **Introduction of currents**

Now for  $\boldsymbol{j} \neq 0$ 

 $\nabla \times H = j$ 

To expand, use Stoke's Theorem for any vector V and a closed curve *s*.

$$\int \boldsymbol{V}.\,d\boldsymbol{s} = \iint \boldsymbol{\nabla} \times \boldsymbol{V}.\,d\boldsymbol{S}$$



Apply this to:  $\nabla \times H = j$ 

then in a magnetic circuit: (Ampere's equation)

$$\int \boldsymbol{H}.\,d\boldsymbol{s}=NI$$

NI(Ampere-turns) is total current cutting S



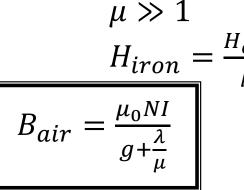
## **Excitation current in a dipole**

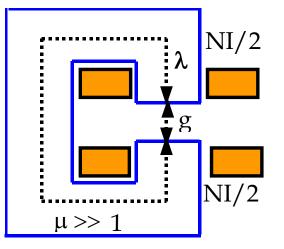
B is approximately constant round the loop made up of  $\lambda$  and g, (but see below);

But in iron,

and

So





g, and  $\lambda/\mu$  are the 'reluctance' of the gap and iron.

Approximation ignoring iron reluctance  $(\frac{\lambda}{\mu} \ll g)$ :  $NI = -\frac{Bg}{\mu_0}$ 

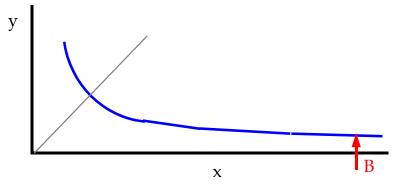
# Excitation current in quad & sextupole

For quadrupoles and sextupoles, the required excitation can be calculated by considering fields and gap at large *x*.

For example: **Quadrupole:** 

Pole equation: 
$$xy = \frac{R^2}{2}$$
  
On *x* axes  $B_y = gx$   
where *g* is gradient in T/m

At large x (to give vertical lines of B):  $NI = gx \frac{R^2}{2x\mu_0}$ i.e.  $NI = \frac{gR^2}{2\mu_0}$  (per pole)



The same method for a **Sextupole** (coefficient  $g_s$ ) gives:  $NI = \frac{g_s R^3}{3\mu_0}$  (per pole)

**Ben Shepherd, ASTeC** 



#### General solution for magnets order *n*

 $\mu_0 NI$ 

In air (remote currents!)

Integrating over a limited path

(not circular) in air:

$$B = \mu_0 H$$
$$B = -\nabla \phi$$

 $NI = \frac{\phi_1 - \phi_2}{\mu_0}$  $\phi_{1}, \phi_{2}$  are the scalar potentials at two points in air. Define  $\phi = 0$  at magnet centre;

then potential at the pole is:

Apply the general equations for magnetic field harmonic order *n* for non-skew magnets (all  $J_n = 0$ ) giving:  $NI = \frac{1}{n} \frac{1}{\mu_0} \frac{B_r}{R^{n-1}} R^n$ Where:

> *NI* is excitation per pole *R* is the inscribed radius (or half gap in a dipole)  $\frac{B_r}{P^{n-1}}$  is magnet strength in T/m⁽ⁿ⁻¹⁾

$$\phi = \mu_0 \text{ NI}$$

$$\phi = 0$$

V



## **Further Reading**

- CERN Accelerator School on Magnets Bruges, Belgium; June 2009 <u>https://arxiv.org/html/1105.5069v1</u>
- United States Particle Accelerator School Magnet and RF Cavity Design, January 2016 <u>http://uspas.fnal.gov/materials/16Austin/austin-magnets.shtml</u>
- J.D. Jackson, *Classical Electrodynamics*
- J.T. Tanabe, *Iron Dominated Electromagnets*