

Free Electron Lasers

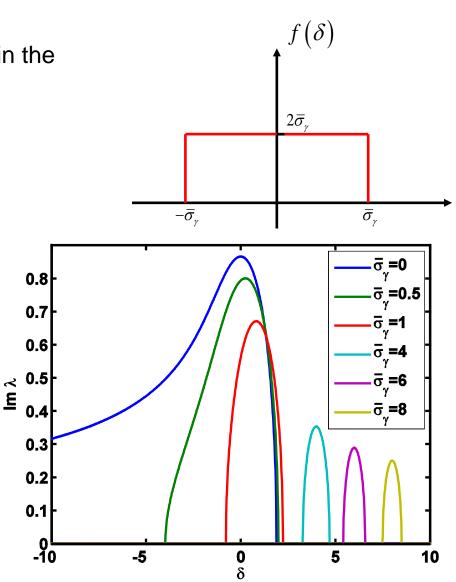
Lecture IV

Brian M^cNeil, University of Strathclyde, Glasgow, Scotland.

Spoiling effects

Energy spread

The effects of energy spread can be investigated by introducing a spread in the initial values of p_i :


$$\delta_{j} = p_{j} \left(\overline{z} = 0 \right) \equiv \frac{\gamma_{r} - \gamma_{j} \left(\overline{z} = 0 \right)}{\rho \gamma_{r}}$$

The steady state dispersion relation becomes:

$$\lambda - \int_{-\infty}^{\infty} \frac{\mathrm{d}\delta f(\delta)}{(\lambda - \delta)^2} = 0$$

with solutions for the imaginary part of lambda, determining the high gain case, shown opposite. Energy spread effects become less important when:

$$\overline{\sigma}_{\gamma} < 1 \implies \frac{\sigma_{\gamma}}{\gamma} < \rho$$

R. Bonifacio¹, L. De Salvo Souza and B.W.J. McNeil Optics Communications 93 (1992) 179-185

Emittance*

The beam emittance introduces two main effects:

1) The electron beam radius in a matched focussing channel** is determined by the emittance via:

$$r_{b} = \sqrt{\frac{\varepsilon_{n}\beta}{\gamma}} \implies \rho = \left(\frac{e}{16\pi\epsilon_{0}mc^{3}}\frac{I_{pk}a_{w}^{2}f_{B}^{2}}{\gamma_{r}^{2}k_{w}^{2}\epsilon_{n}\beta}\right)$$

 β – betafunction of focussing lattice.

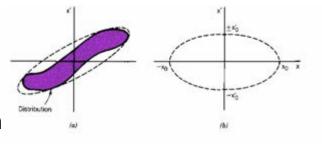
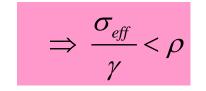
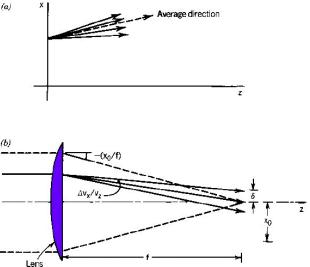
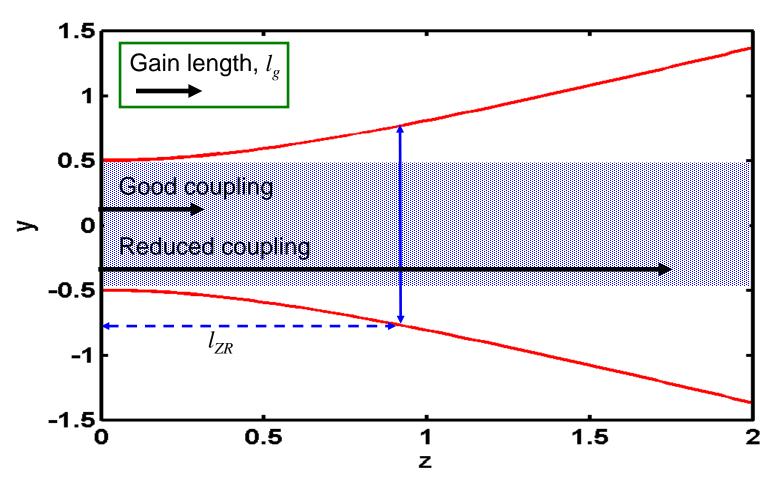




Figure 3.8. Definition of emittance. (a) Uniform orbit-vector distribution inside a boundary, surrounded by a minimum-area ellipse. (b) Upright trace-space ellipse — the enclosed emittance equals $x_i x_0^+ \pi$ -m-rad.

2) The emittance introduces an energy spread in the resonant electron energy***. This can be added in quadrature with the real energy spread to estimate emittance effects in a 1D model:

$$\sigma_{\epsilon} = \frac{\epsilon_n a_w^2 k_w^2 \beta}{4\gamma_r (1 + a_w^2)} \implies \sigma_{eff} = \sqrt{\sigma_{\epsilon}^2 + \sigma_{\gamma}^2}.$$



*Stanley Humphries, Charged Particle Beams: http://www.fieldp.com/cpb.html **See H. Owen course

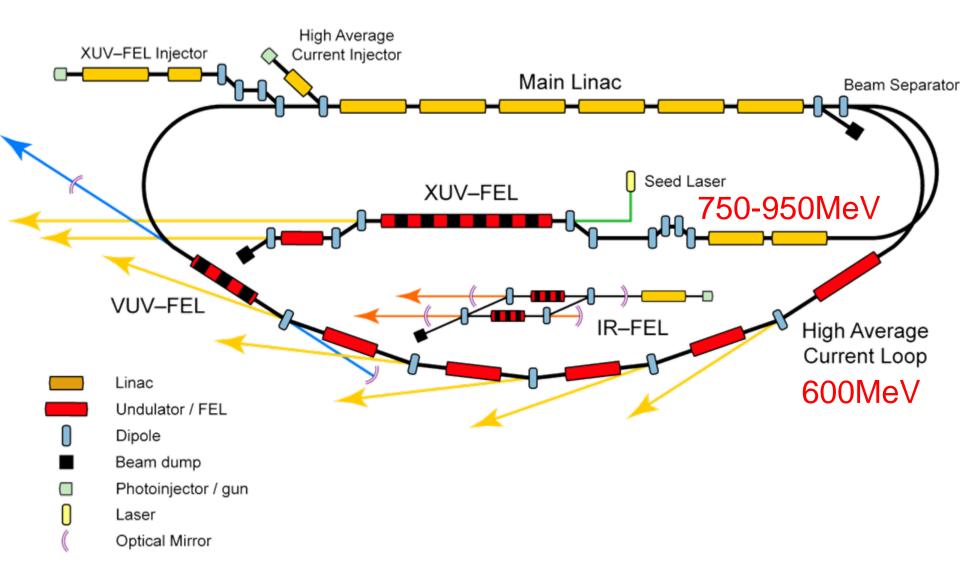
***R. Bonifacio¹, L. De Salvo Souza and B.W.J. McNeil Optics Communications 93 (1992) 179-185

Diffraction

The Rayleigh length l_{ZR} is that in which a beam diffracts to twice its transverse mode area. In an FEL amplifier, if the gain length of the FEL interaction is greater than the Rayleigh length then diffraction can cause reduced coupling and longer saturation lengths.

8.1.3.3 Summary of Criteria for Optimum FEL Performance*

The one-dimensional theory describes the best-case limit for FEL operation. The following summarises the limits required for the one-dimensional equations to be a valid approximation for a high gain FEL interaction that achieves saturation:


- $L_u \gg L_g$ The undulator is significantly longer than the interaction gain length
- $L_g \leq l_{ZR}$ The gain length is less than the Rayleigh range
- $L_g < \beta$ The gain length is less than the betatron function
- $\delta_r \ll r_b$ Electron beam wander off-axis is much less than the beam radius
- $r_b \approx \text{constant}$ The electron beam radius is approximately a constant
- $\sigma_{\gamma} \leq \rho$ Homogeneous relative energy spread is less than the FEL coupling parameter
- $\sigma_{\varepsilon} \leq \rho$ Resonant relative energy spread due to emittance is less than the FEL coupling parameter

*4GLS Conceptual Design Report, Chapter 8: http://www.4gls.ac.uk/documents.htm

Real FEL designs as taken from the 4GLS design*

*4GLS Conceptual Design Report, Chapter 8: http://www.4gls.ac.uk/documents.htm

4GLS CDR – April 2006

			-				
	XUV-FEL	VUV-FEL	IR-FEL				
FEL DESCRIPTION							
FEL design	High Gain Amplifier	Regenerative Amplifier	Oscillator				
Seeding type	External seeding	Self-seeding	Self-seeding				
Seeding mechanism	HHG source	Low-Q cavity	High-Q cavity				
FEL PHOTON OUTPUT							
Tuning Range	8 - 100 eV	3 - 10 eV	2.5 - 200 μm				
Repetition rate	1 kHz	$n \times 4\frac{1}{3} \text{ MHz}$	13 MHz				
Polarisation	Variable elliptical	Variable elliptical	Variable elliptical				
Max Peak Power	8 GW	500 MW (3 GW*)	9 MW (>20 MW*)				
Pulse length FWHM	< 50 fs	170 fs (25 fs*)	2 ps (300 fs*)				
Typical $\Delta v \Delta t$	≈ 0.6	≈ 1.0	≈ 0.9				
Max pulse energy	400 µJ	70 µJ	50 μJ				
ELECTRON BEAM PARAMETERS AT FEL							
Energy	750 - 950 MeV	600 MeV	25 - 60 MeV				
Bunch Charge	1 nC	77 pC	200 pC				
RMS bunch length	266 fs	100 fs	1 - 10 ps				
Peak Current	1.5 kA	300 A	8 - 80 A				
Normalised emittance	2 mm mrad	2 mm mrad	10 mm mrad				
RMS energy spread	0.1 %	0.1 %	0.1 %				
UNDULATOR PARAMETERS							
Undulator Type	PPM & APPLE-II	APPLE-II	APPLE-II				
No of Modules	8&5	5	1 & 1				
Module length	2 m	2.2 m	$2.65 \mathrm{~m} \& 5.07 \mathrm{~m}$				
Period	45 mm & 51 mm	60 mm	53 mm & 145 mm				
Focussing	FODO	FODO	Natural				
Minimum magnetic gap	10 mm	10 mm	23.5 mm & 74 mm				

Table 8.1 Summary of parameter and performance estimates for the FEL sources of 4GLS

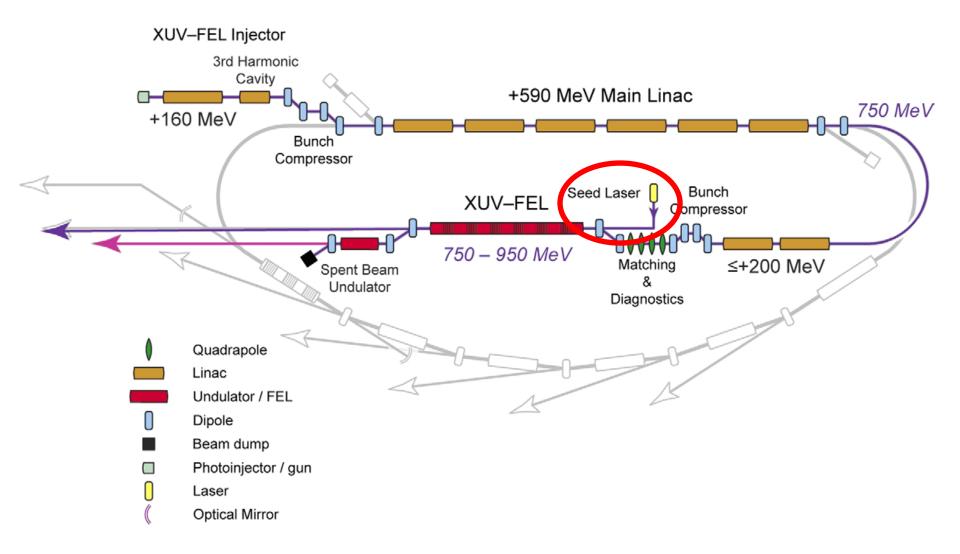
* indicates possible output in superradiant mode

The open-access journal for physics

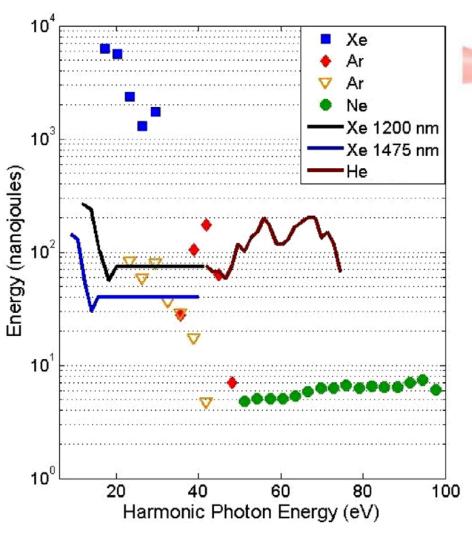
New Journal of Physics 9 (2007) 82

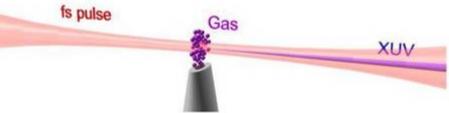
An XUV-FEL amplifier seeded using high harmonic generation

B W J McNeil^{1,5}, J A Clarke², D J Dunning², G J Hirst³, H L Owen², N R Thompson², B Sheehy⁴ and P H Williams²

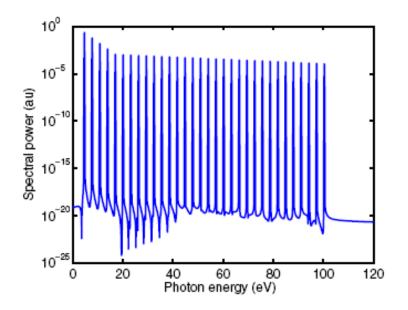


New Journal of Physics 9 (2007) 239

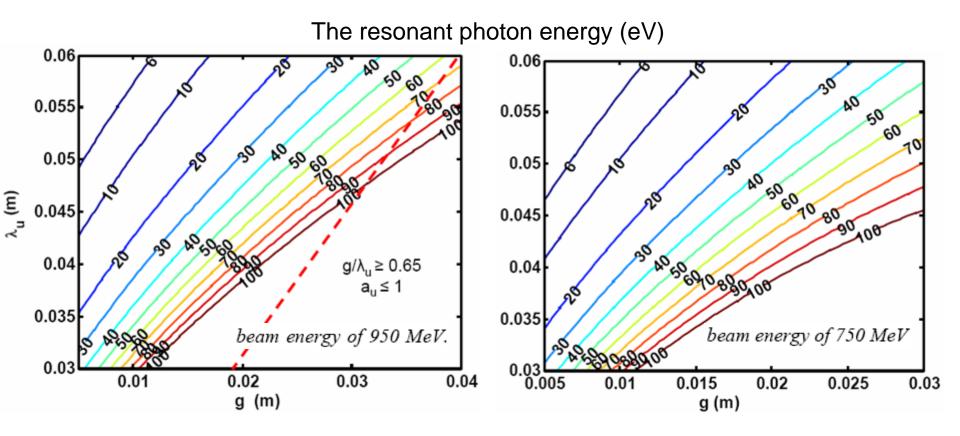

A design for the generation of temporally-coherent radiation pulses in the VUV and beyond by a self-seeding high-gain free electron laser amplifier


B W J McNeil^{1,4}, N R Thompson^{1,2}, D J Dunning², J G Karssenberg³, P J M van der Slot³ and K-J Boller³

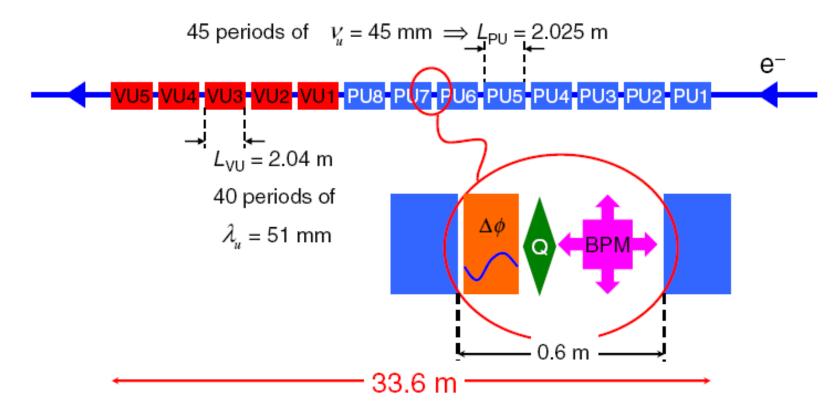
XUV-FEL (~10-100nm)



HHG seed sources



These sources result from the high harmonic emission from a gas jet of noble gas driven by a high power laser:



The Undulators

Tuning the FEL is achieved by varying the undulator gap and by changing the electron beam energy between 750-950MeV. For the planar undulators above a period of 45mm was chosen to enable tuning over the photon energy range 10-100eV.

Undulator lattice

The undulator is split into many modules of length ~2m each (PU - planar undulator; VU - variable polarisation undulator). Between each module are phase-matching magnets, quadrupole focussing units for electron transport (a FODO lattice is used) and beam positioning monitors. Note the use of the variable polarisation units in the last few undulator sections to give variably polarised radiation output.

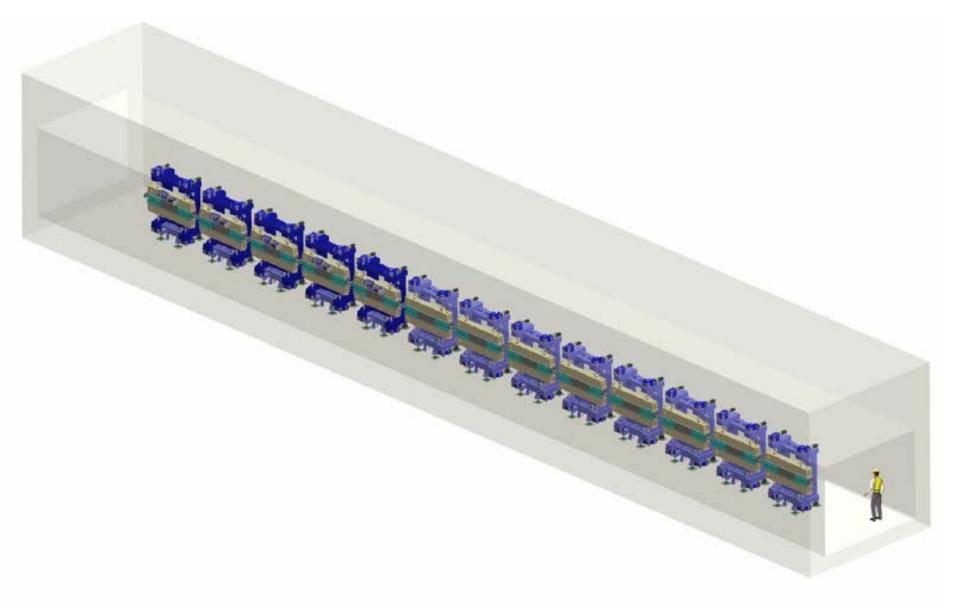


Figure 8.5 An engineering design drawing of the XUV-FEL undulator tunnel. The electron beam direction is right to left. The first eight undulator modules are planar and the last five are APPLE-II.

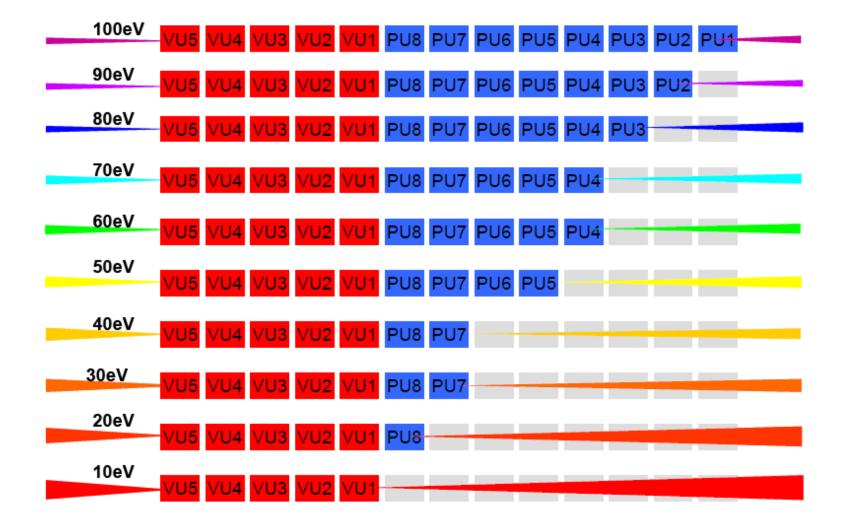


Figure 8.7 Schematic of the modular undulator system of the XUV-FEL demonstrating the different modes of operation across the photon energy range 10-100 eV. Undulator modules marked in grey have large magnetic gaps $(\lim \overline{a_u} \to 0)$ and do not affect FEL operation. Electron beam transport is right to left. The minimum required undulator gap (and vacuum vessel internal aperture) decrease in gradual steps from 28 mm (25 mm) for PU1 down to 10 mm (7 mm) for PU8 and the variable polarisation modules VU1-VU5.

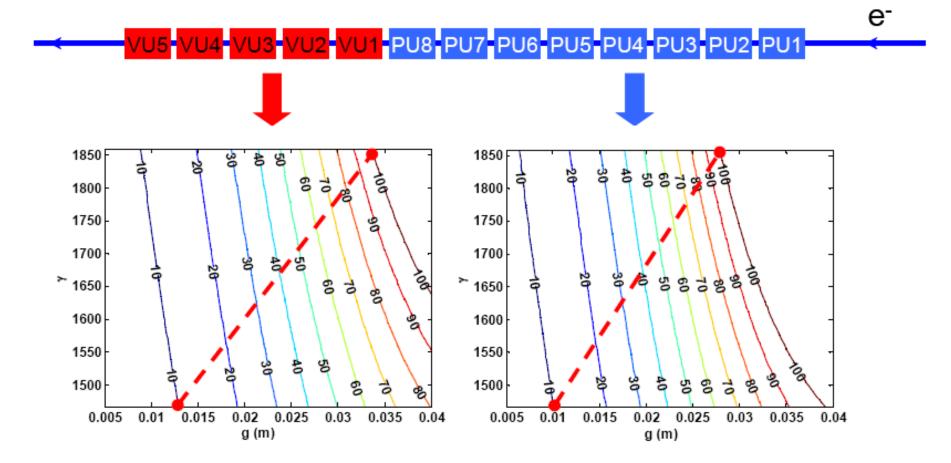
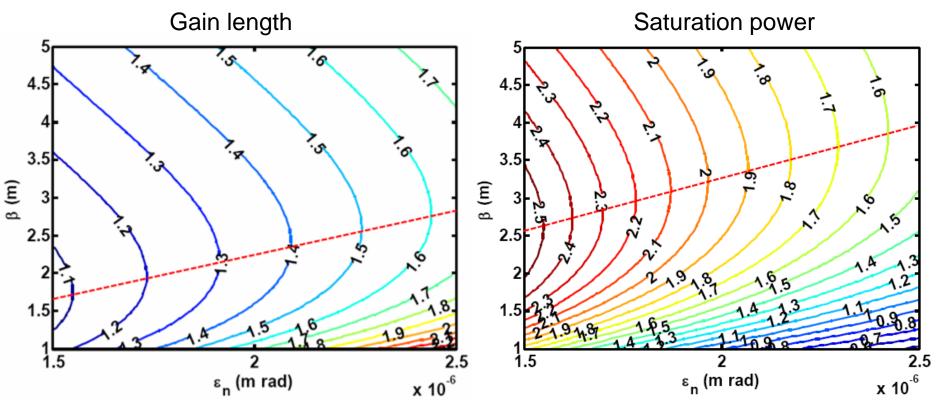
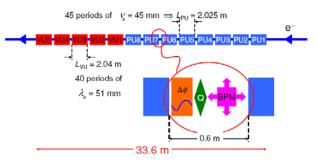
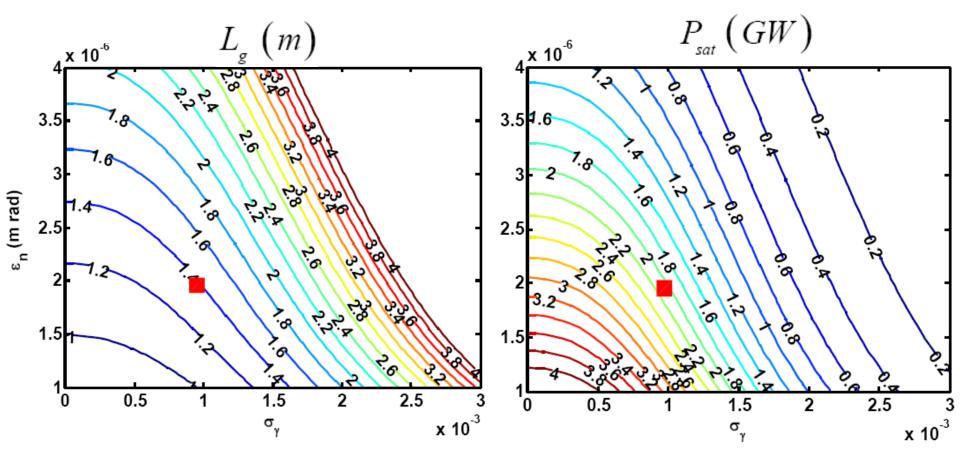
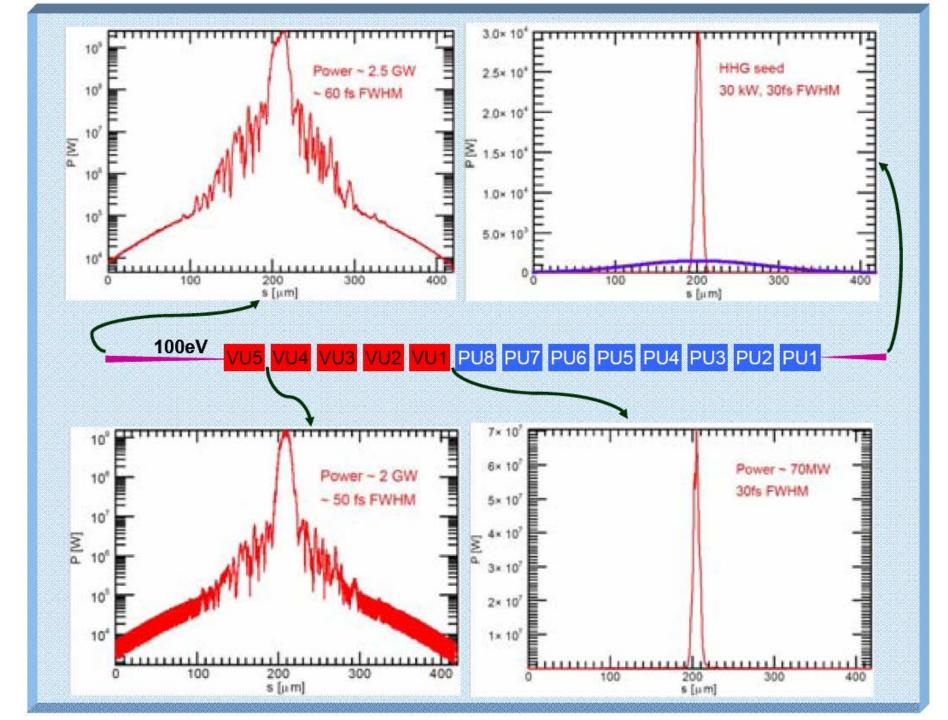




Figure 8.12 Tuning contours of the resonant photon energy (10 - 100 eV) as a function of the electron beam relativistic parameter ($E_0 = 750 - 950 \text{ MeV}$) and the undulator magnetic gap g. The variable polarisation undulators VU1..5 are set to planar mode so that output radiation is linearly polarised. The red annotation shows the range only, not necessarily the optimum tuning curve.

Optimising the focussing lattice




The beta-function was chosen to be ~5m. This was to stop 'sausaging' of the electron beam due to the variation in the beta-function of a FODO lattice:

$$\beta = \frac{2\gamma m_e c}{eL_Q B_Q} \pm \frac{\lambda_{FODO}}{2} \implies r_b = \sqrt{\frac{\varepsilon_n \beta}{\gamma}} \text{ oscillates.}$$

Beam quality

The gain length and the saturated power for 100eV operation

VUV-FEL 3-10eV

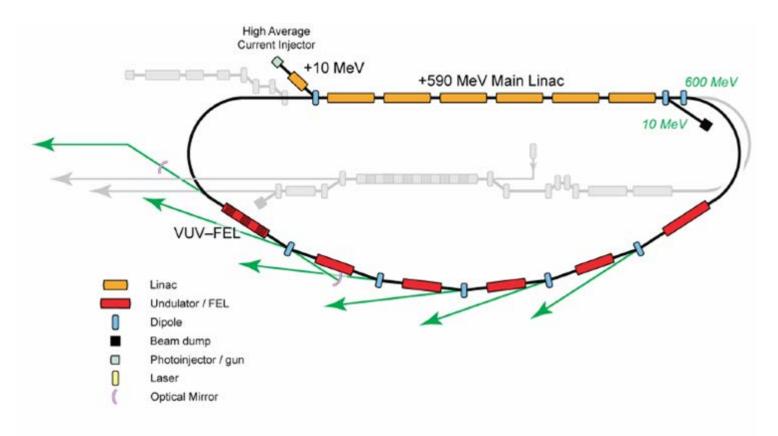


Figure 8.49 Schematic showing the main components relevant to the VUV-FEL

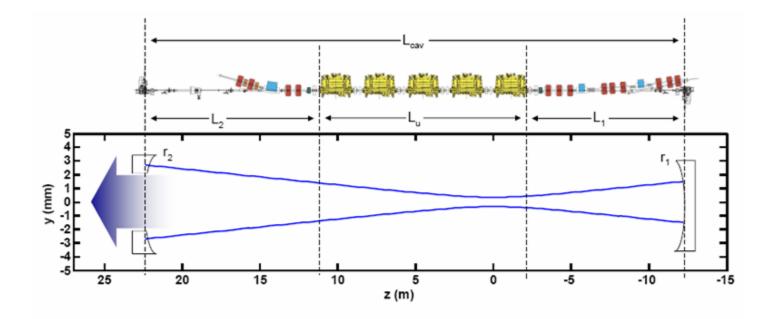


Figure 8.53 Schematic of the first iteration of the VUV-FEL low-Q cavity. Shown aligned on the same longitudinal scale is an engineering representation of the VUV-FEL. The radius of curvature, r_2 , of the hole-outcoupling mirror is greater than that of the upstream mirror, r_1 . This cavity design has a minimum beam waist nearer the entrance to the undulator assisting the self-seeding process.

	Planar		Helical			
	L_{g}	ρ	Z	Lg	ρ	Z
10 eV	1.81 m	1.52×10 ⁻³	3.52	1.24 m	2.22×10 ⁻³	5.16 (5 mods)
						4.13 (4 mods)
3 eV	1.38 m	2.00×10 ⁻³	4.64 (5 mods)	0.87 m	3.17×10 ⁻³	7.38 (5 mods)
			3.71 (4 mods)			5.90 (4 mods)
						4.43 (3 mods)

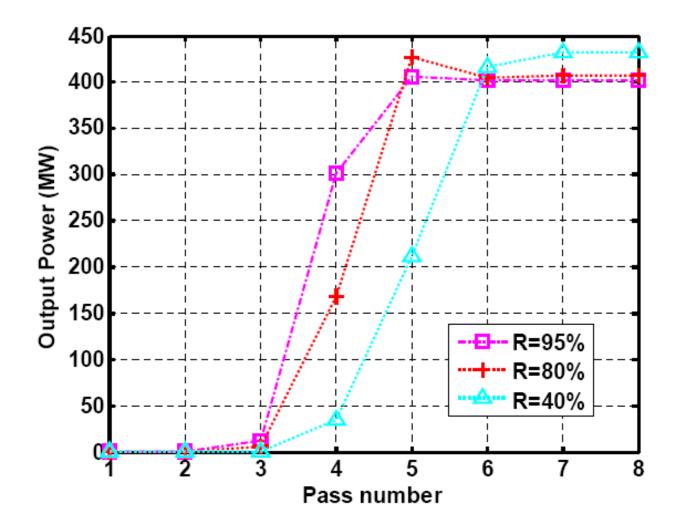


Figure 8.55 Three-dimensional steady-state simulation of the VUV-FEL operating at 10 eV photon energy. The output power is plotted as a function of optical pass number through the cavity for an outcoupling factor of $\alpha = 75\%$ and for three different mirror reflectivities.

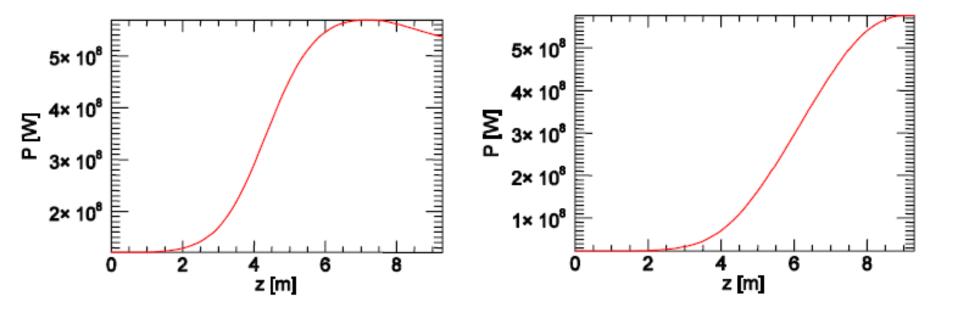


Figure 8.56 Power evolution of the radiation through the undulator at cavity saturation for the case of 95% mirror reflectivity (left) and 40% reflectivity (right). For 95% reflectivity the FEL power oversaturates, whereas for 40% reflectivity the power saturates exactly at the end of the undulator, leading to optimum outcoupled power.

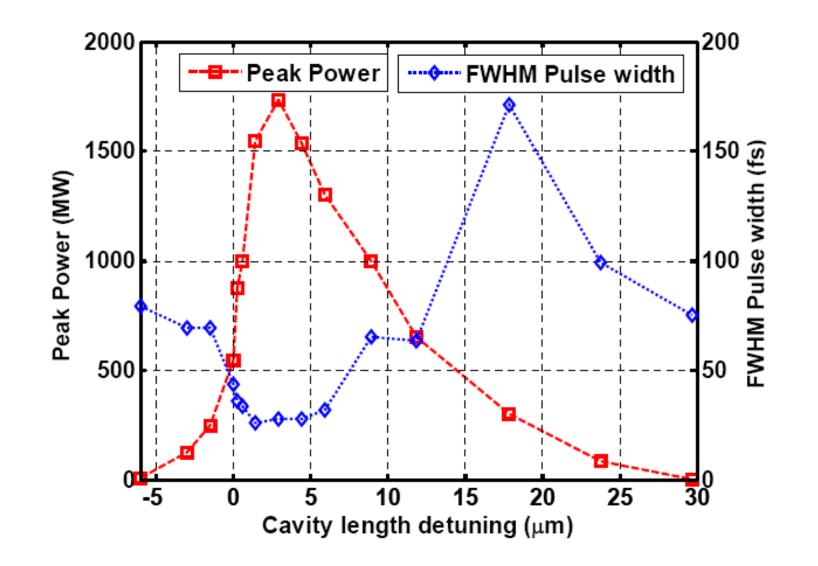


Figure 8.57 Peak power (red) and FWHM pulse width (blue) as a function of VUV-FEL cavity detuning. The parameters are for 10 eV photon output.

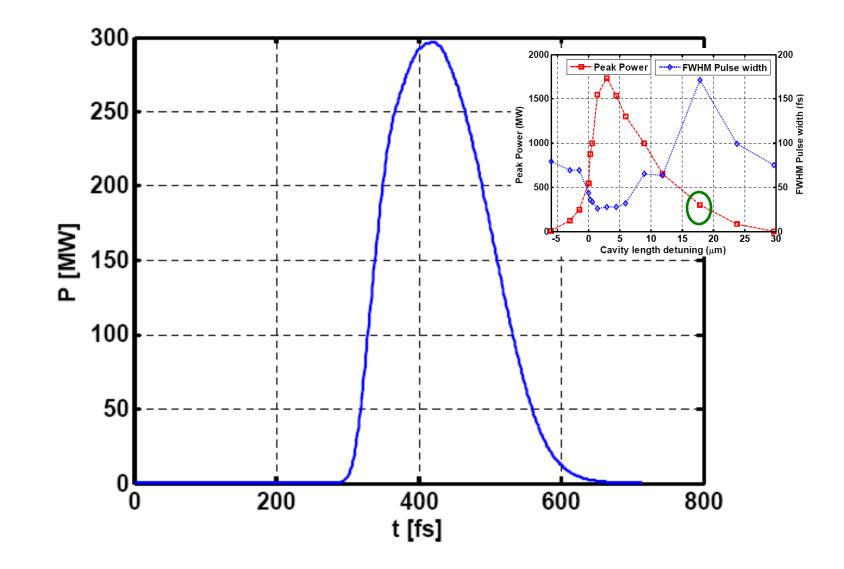


Figure 8.59 One-dimensional simulation result showing the 10 eV radiation power at saturation as a function of time for cavity detuning $\delta_c \approx 18 \,\mu\text{m}$. The pulse shape demonstrates none of the superradiant behaviour of Figure 8.58

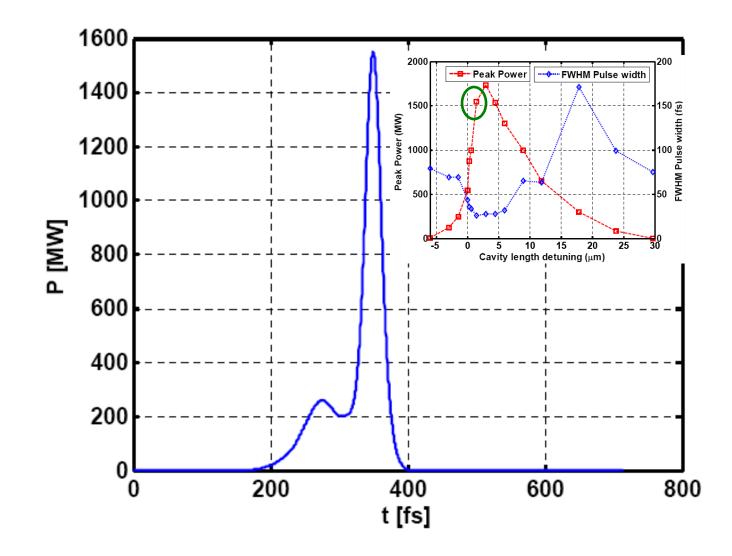


Figure 8.58 One-dimensional simulation result showing the 10 eV radiation power at saturation as a function of time for near- zero cavity detuning. The pulse shape demonstrates a spiking behaviour typical to FEL superradiance.

IR-FEL 2.5-200µm

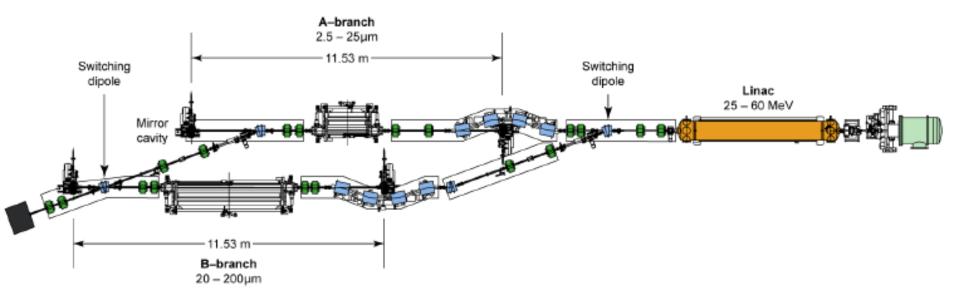


Figure 8.64 Conceptual layout of the IR-FEL showing the two undulator branches

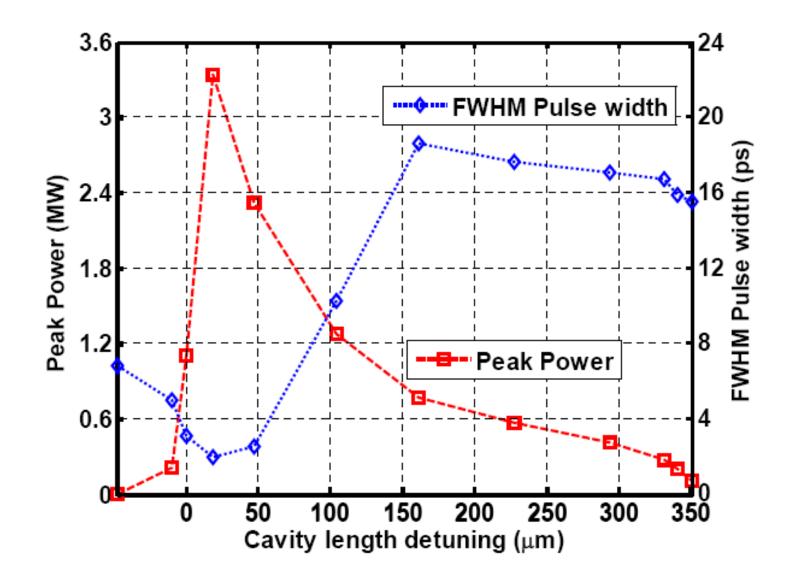


Figure 8.75 Peak power and FWHM pulse width as a function of cavity length detuning, for IR-FEL A-Branch at 25 µm with 10 ps electron bunches

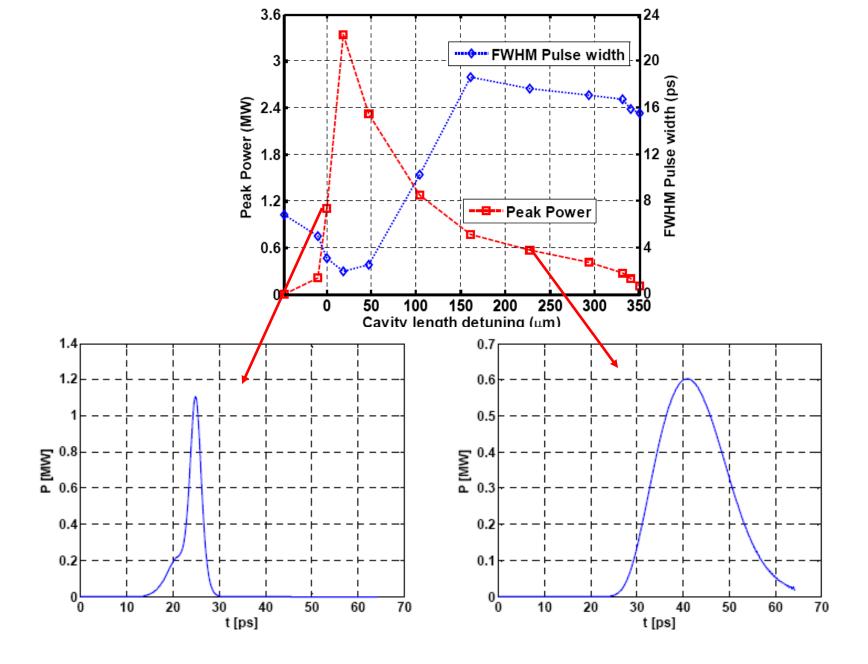
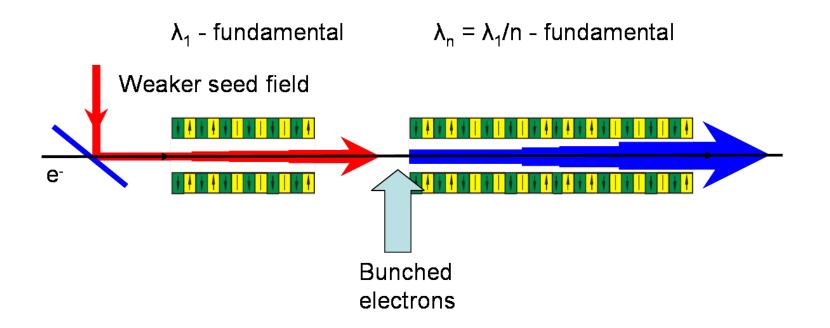


Figure 8.76 IR-FEL A-Branch 25 μ m pulse profile corresponding to a synchronous cavity length (left) and detuned by 227 μ m (right)

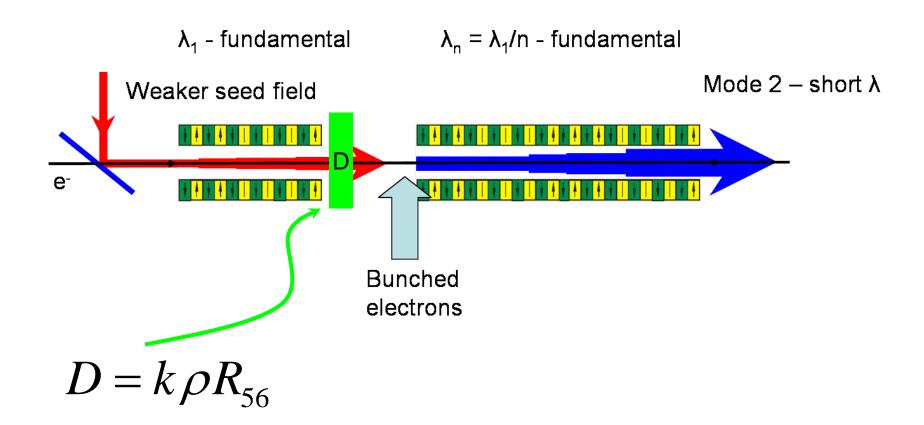
DESCRIPTION


FEL designOscillatorSeeding typeSelf-seedingSeeding mechanismHigh-Q cavity PHOTON OUTPUT Tuning Range $2.5 - 200 \ \mum$ Peak Power $9 \ MW (>20 \ MW) - 1 \ MW (>4 \ MW*)$ Pulse length FWHM $2 \ ps (300 \ fs^*) - 10 \ ps (6 \ ps^*)$ Repetition rate $13 \ MHz$ PolarisationVariable ellipticalTypical $\Delta v\Delta r$ ≈ 0.9 Max pulse energy $\approx 50 \ \mu J$ ELECTRON BEAM PARAMETERS $25 - 60 \ MeV$ Bunch Charge $200 \ pC$ RMS bunch length $1 - 10 \ ps$ Normalised emittance $10 \ mm \ mrad$ RMS energy spread $0.1 \ without the set the s$	DESCRIPTION		
Seeding mechanismHigh-Q cavityPHOTON OUTPUTITuning Range $2.5 - 200 \ \mum$ Peak Power $9 \ MW (> 20 \ MW) - 1 \ MW (>4 \ MW*)$ Pulse length FWHM $2 \ ps (300 \ fs^*) - 10 \ ps (6 \ ps^*)$ Repetition rate $13 \ MHz$ PolarisationVariable ellipticalTypical $\Delta v\Delta t$ ≈ 0.9 Max pulse energy $\approx 50 \ \mu J$ ELECTRON BEAM PARAMETERS $= 200 \ pC$ Energy $25 - 60 \ MeV$ Bunch Charge $200 \ pC$ RMS bunch length $1 - 10 \ ps$ Normalised emittance $10 \ mm \ nrad$ RMS energy spread $0.1 \ \%$ Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \ m / 5.07 \ m$ Period $53 \ mm / 145 \ mm$ FocussingNaturalMinimum gap $23.5 \ mm / 74 \ mm$ OPTICAL CAVITY PARAMETERSI.53 \ mLength $1.53 \ m$ Rayleigh length $0.94 \ m / 2.05 \ m$ Stability parameter g^2 $0.90 / 0.60$	FEL design	Oscillator	
PHOTON OUTPUTTuning Range2.5 - 200 μ mPeak Power9 MW (>20 MW) - 1 MW (>4 MW*)Pulse length FWHM2 ps (300 fs*) - 10 ps (6 ps*)Repetition rate13 MHzPolarisationVariable ellipticalTypical $\Delta v\Delta r$ ≈ 0.9 Max pulse energy $\approx 50 \ \mu$ JELECTRON BEAM PARAMETERSEnergyEnergy25 - 60 MeVBunch Charge200 pCRMS bunch length1 - 10 psNormalised emittance10 mm mradRMS energy spread0.1 %Undulator TypeAPPLE-IINo of Modules1 /1Module length2.65 m / 5.07 mPeriod53 mm / 145 mmFocussingNaturalMinimum gap23.5 mm / 74 mmOPTICAL CAVITY PARAMETERS1.53 mLength1.53 mRayleigh length0.90 / 0.60	Seeding type	Self-seeding	
Tuning Range $2.5 - 200 \ \mum$ Peak Power $9 \ MW (> 20 \ MW) - 1 \ MW (> 4 \ MW*)$ Pulse length FWHM $2 \ ps (300 \ fs^*) - 10 \ ps (6 \ ps^*)$ Repetition rate $13 \ MHz$ PolarisationVariable ellipticalTypical $\Delta v\Delta r$ ≈ 0.9 Max pulse energy $\approx 50 \ \mu J$ ELECTRON BEAM PARAMETERS $= 200 \ pC$ Bunch Charge $200 \ pC$ RMS bunch length $1 - 10 \ ps$ Normalised emittance $10 \ mm \ mrad$ RMS energy spread $0.1 \ \%$ Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \ m/5.07 \ m$ Period $53 \ mm / 145 \ mm$ FocussingNaturalMinimum gap $23.5 \ mm / 74 \ mm$ OPTICAL CAVITY PARAMETERS $11.53 \ m$ Rayleigh length $0.90 \ / 0.60$	Seeding mechanism	High-Q cavity	
Peak Power $9 \text{ MW} (>20 \text{ MW}) \cdot 1 \text{ MW} (>4 \text{ MW})$ Pulse length FWHM $2 \text{ ps} (300 \text{ fs}^*) \cdot 10 \text{ ps} (6 \text{ ps}^*)$ Repetition rate 13 MHz PolarisationVariable ellipticalTypical $\Delta v\Delta t$ ≈ 0.9 Max pulse energy $\approx 50 \mu J$ ELECTRON BEAM PARAMETERSEnergyEnergy $25 \cdot 60 \text{ MeV}$ Bunch Charge 200 pC RMS bunch length $1 \cdot 10 \text{ ps}$ Normalised emittance 10 mm mrad RMS energy spread 0.1% Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERSLengthLength $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	PHOTON OUTPUT		
Pulse length FWHM $2 \text{ ps } (300 \text{ fs}^*) - 10 \text{ ps } (6 \text{ ps}^*)$ Repetition rate 13 MHz PolarisationVariable ellipticalTypical $\Delta \nu \Delta t$ ≈ 0.9 Max pulse energy $\approx 50 \mu \text{J}$ ELECTRON BEAM PARAMETERS $\approx 50 \mu \text{J}$ Energy $25 - 60 \text{ MeV}$ Bunch Charge 200pC RMS bunch length $1 - 10 \text{ps}$ Normalised emittance 10mm mrad RMS energy spread 0.1% Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{m} / 5.07 \text{m}$ Period $53 \text{nm} / 145 \text{nm}$ FocussingNaturalMininum gap $23.5 \text{nm} / 74 \text{nm}$ OPTICAL CAVITY PARAMETERS 11.53m Length $1.94 \text{m} / 2.05 \text{m}$ Rayleigh length $0.90 / 0.60$	Tuning Range	2.5 - 200 μm	
Repetition rate13 MHzPolarisationVariable ellipticalTypical $\Delta \nu \Delta r$ ≈ 0.9 Max pulse energy $\approx 50 \mu J$ ELECTRON BEAM PARAMETERSEnergy $25 \cdot 60 \text{MeV}$ Bunch Charge 200pC RMS bunch length $1 \cdot 10 \text{ps}$ Normalised emittance 10mm mrad RMS energy spread 0.1% UNDULATOR PARAMETERS $1/1$ Module length $2.65 \text{m} 5.07 \text{m}$ Period $53 \text{mm} 145 \text{mm}$ FocussingNaturalMinimum gap $23.5 \text{nm} 74 \text{mm}$ OPTICAL CAVITY PARAMETERS 11.53m Length $1.94 \text{m} 2.05 \text{m}$ Rayleigh length $0.90 / 0.60$	Peak Power	9 MW (>20 MW) - 1 MW (>4 MW*)	
PolarisationVariable ellipticalTypical $\Delta v\Delta r$ ≈ 0.9 Max pulse energy $\approx 50 \ \mu$ JELECTRON BEAM PARAMETERS $\approx 50 \ \mu$ JEnergy25 - 60 MeVBunch Charge200 pCRMS bunch length1 - 10 psNormalised emittance10 mm mradRMS energy spread0.1 %Undulator TypeAPPLE-IINo of Modules1 / 1Module length2.65 m / 5.07 mPeriod53 mm / 145 mmFocussingNaturalMinimum gap23.5 mm / 74 mmOPTICAL CAVITY PARAMETERS11.53 mLength1.153 mRayleigh length0.94 m / 2.05 mStability parameter g^2 0.90 / 0.60	Pulse length FWHM	2 ps (300 fs*) - 10 ps (6 ps*)	
Typical $\Delta \nu \Delta t$ ≈ 0.9 Max pulse energy $\approx 50 \mu$ JELECTRON BEAM PARAMETERSEnergy $25 - 60 \text{MeV}$ Bunch Charge 200pC RMS bunch length $1 - 10 \text{ps}$ Normalised emittance $10 \text{mm} \text{mrad}$ RMS energy spread 0.1% UNDULATOR PARAMETERSUndulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{m} / 5.07 \text{m}$ Period $53 \text{mm} / 145 \text{mm}$ FocussingNaturalMinimum gap $23.5 \text{mm} / 74 \text{mm}$ OPTICAL CAVITY PARAMETERSI.1.53 $ \text{m}$ Length 11.53m Rayleigh length $0.90 / 0.60$	Repetition rate	13 MHz	
Max Max pulse energy $\approx 50 \mu J$ ELECTRON BEAM PARAMETERSEnergy $25 - 60 MeV$ Bunch Charge $200 pC$ RMS bunch length $1 - 10 ps$ Normalised emittance $10 mm mrad$ RMS energy spread 0.1% UNDULATOR PARAMETERS $1/1$ Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 m / 5.07 m$ Period $53 mm / 145 mm$ FocussingNaturalMinimum gap $23.5 mm / 74 mm$ OPTICAL CAVITY PARAMETERS $11.53 m$ Length $1.53 m$ Rayleigh length $0.94 m / 2.05 m$ Stability parameter g^2 $0.90 / 0.60$	Polarisation	Variable elliptical	
ELECTRON BEAM PARAMETERSEnergy $25 - 60 \text{ MeV}$ Bunch Charge 200 pC RMS bunch length $1 - 10 \text{ ps}$ Normalised emittance 10 mm mrad RMS energy spread 0.1% UNDULATOR PARAMETERSUndulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length 1.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Typical $\Delta v \Delta t$	≈ 0.9	
Energy $25 - 60 \text{ MeV}$ Bunch Charge 200 pC RMS bunch length $1 - 10 \text{ ps}$ Normalised emittance 10 mm mrad RMS energy spread 0.1% UNDULATOR PARAMETERS 0.1% Undulator Type APPLE-II No of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ Focussing Natural Minimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS I1.53 m Length 11.53 m Rayleigh length $0.90 / 0.60$	Max pulse energy	$\approx 50~\mu J$	
Bunch Charge200 pCRMS bunch length $1 - 10 \text{ ps}$ Normalised emittance 10 mm mrad RMS energy spread 0.1% UNDULATOR PARAMETERS 1% Undulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	ELECTRON BEAM PARAMETERS		
RMS bunch length $1 - 10 \text{ ps}$ Normalised emittance 10 mm mrad RMS energy spread 0.1% UNDULATOR PARAMETERSUndulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{ m}/5.07 \text{ m}$ Period $53 \text{ mm}/145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm}/74 \text{ mm}$ OPTICAL CAVITY PARAMETERSLengthLength 11.53 m Rayleigh length $0.94 \text{ m}/2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Energy	25 - 60 MeV	
Normalised emittance10 mm mradRMS energy spread 0.1% UNDULATOR PARAMETERS $APPLE-II$ Undulator Type $APPLE-II$ No of Modules $1 / 1$ Module length $2.65 m / 5.07 m$ Period $53 mm / 145 mm$ FocussingNaturalMinimum gap $23.5 mm / 74 mm$ OPTICAL CAVITY PARAMETERS $11.53 m$ Length $11.53 m$ Rayleigh length $0.94 m / 2.05 m$ Stability parameter g^2 $0.90 / 0.60$	Bunch Charge	200 pC	
RMS energy spread 0.1% UNDULATOR PARAMETERS $4PPLE-II$ Undulator Type $APPLE-II$ No of Modules $1 / 1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ Focussing Natural Minimum gap $2.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	RMS bunch length	1 - 10 ps	
UNDULATOR PARAMETERSUndulator TypeAPPLE-IINo of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERSLength 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Normalised emittance	10 mm mrad	
Undulator Type APPLE-II No of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ Focussing Natural Minimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	RMS energy spread	0.1 %	
No of Modules $1/1$ Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ Focussing Natural Minimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	UNDULATOR PARAMETERS		
Module length $2.65 \text{ m} / 5.07 \text{ m}$ Period $53 \text{ mm} / 145 \text{ mm}$ Focussing Natural Minimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Undulator Type	APPLE-II	
Period $53 \text{ mm} / 145 \text{ mm}$ FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERSLength 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	No of Modules	1 /1	
FocussingNaturalMinimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERSLength 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Module length	2.65 m / 5.07 m	
Minimum gap $23.5 \text{ mm} / 74 \text{ mm}$ OPTICAL CAVITY PARAMETERS 11.53 m Length 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Period	53 mm / 145 mm	
OPTICAL CAVITY PARAMETERSLength 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Focussing	Natural	
Length 11.53 m Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	Minimum gap	23.5 mm / 74 mm	
Rayleigh length $0.94 \text{ m} / 2.05 \text{ m}$ Stability parameter g^2 $0.90 / 0.60$	OPTICAL CAVITY PARAMETERS		
Stability parameter g^2 0.90 / 0.60	Length	11.53 m	
	Rayleigh length	0.94 m / 2.05 m	
Mirror diameter 100 mm / 180 mm	Stability parameter g^2	0.90 / 0.60	
	Mirror diameter	100 mm / 180 mm	

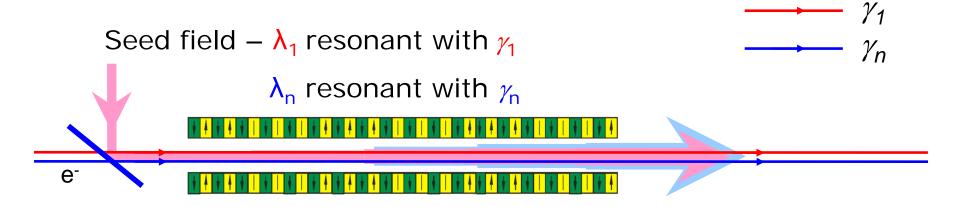
* indicates possible output in superradiant mode

Some advanced schemes

2-undulator concept


An electron beam bunched at a fundmental wavelength also has a stron bunching component at harmonics of the fundamental.

R. Bonifacio, L. De Salvo Souza, P. Pierini, and E. T. Scharlemann, Nucl. Instrum. Methods A 296, 787 (1990).


R. Bonifacio, R. Corsini, and P. Pierini, Phys. Rev. A 45, 4091 (1992).

HGHG concept

L. H. Yu, Phys. Rev. A 44, 5178 (1991)

2-beam FEL amplifier

By choosing $\gamma_n = \sqrt{n} \gamma_1$ the fundamental resonant wavelength of beam γ_n is the *n*th resonant harmonic of beam γ_1 .

The coherence properties of the seed field will be transferred to the higher energy interaction via the coupled harmonic interaction.

B. W. J. McNeil* and G. R. M. Robb PHYSICAL REVIEW E 70, 035501(R) (2004)

A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator

H.-P. SCHLENVOIGT¹, K. HAUPT¹, A. DEBUS¹, F. BUDDE¹, O. JÄCKEL¹, S. PFOTENHAUER¹, H. SCHWOERER^{1,2}, E. ROHWER², J. G. GALLACHER³, E. BRUNETTI³, R. P. SHANKS³, S. M. WIGGINS³ AND D. A. JAROSZYNSKI³*

nature physics | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

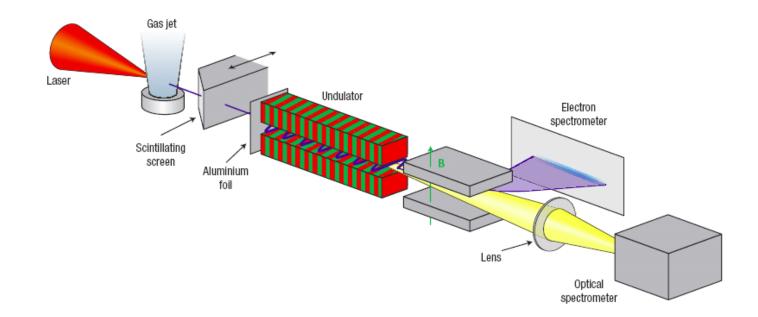
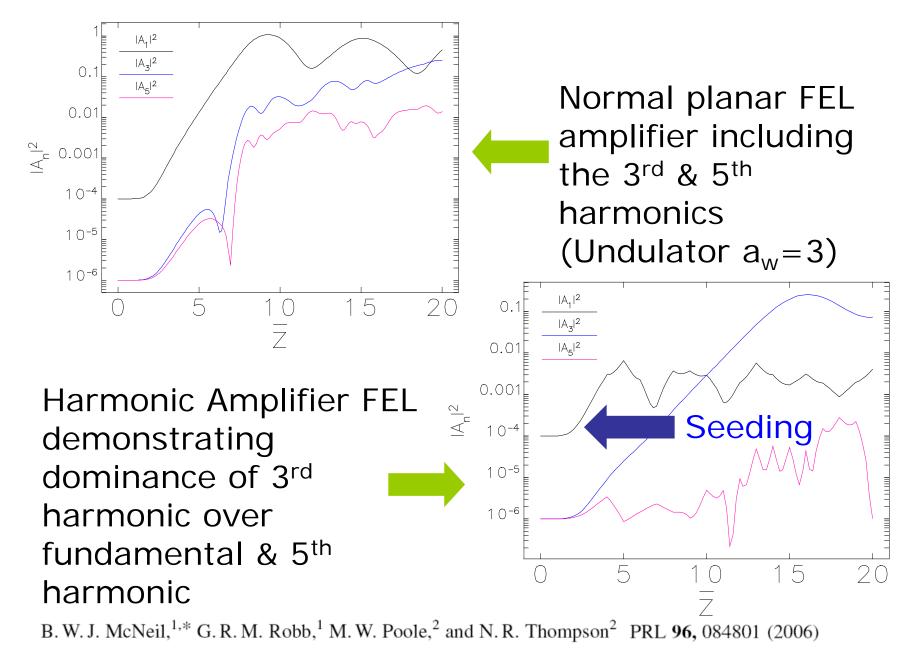



Figure 1 Set-up of the experiment. The laser pulse is focused by an off-axis parabolic mirror into a supersonic helium gas jet where it accelerates electrons (blue line) to several tens of mega-electron volt energy. The electron beam profile may be monitored by a removable scintillating screen. The electrons propagate through an undulator, producing synchrotron radiation, and into a magnetic electron spectrometer. Radiation is collected by a lens and analysed in an optical spectrometer. The spectrometer is protected against direct laser and plasma exposure by a thin aluminium foil in front of the undulator.

Harmonic Amplifier FEL

Attosecond pulse generation

VOLUME 92, NUMBER 22

PHYSICAL REVIEW LETTERS

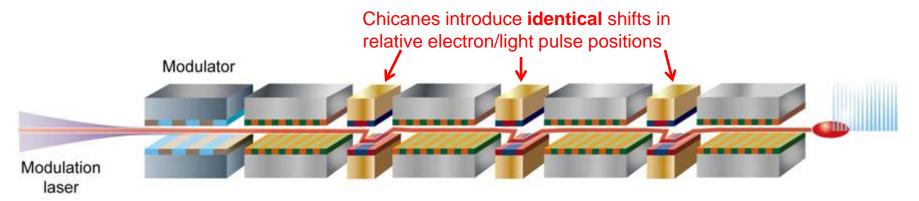
week ending 4 JUNE 2004

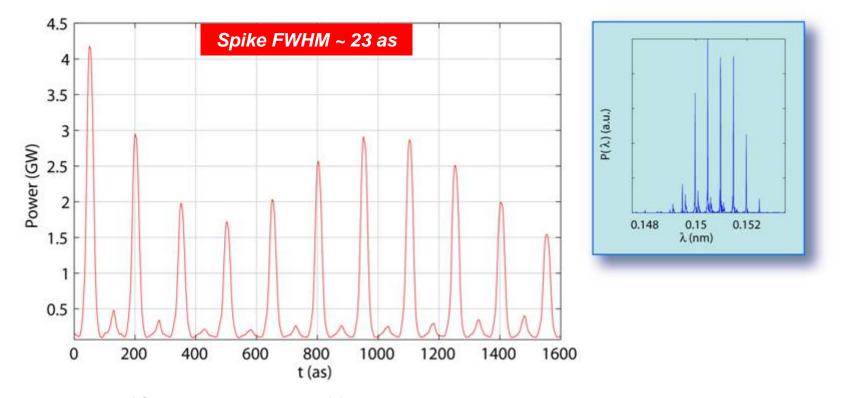
Proposal for Intense Attosecond Radiation from an X-Ray Free-Electron Laser

Alexander A. Zholents and William M. Fawley

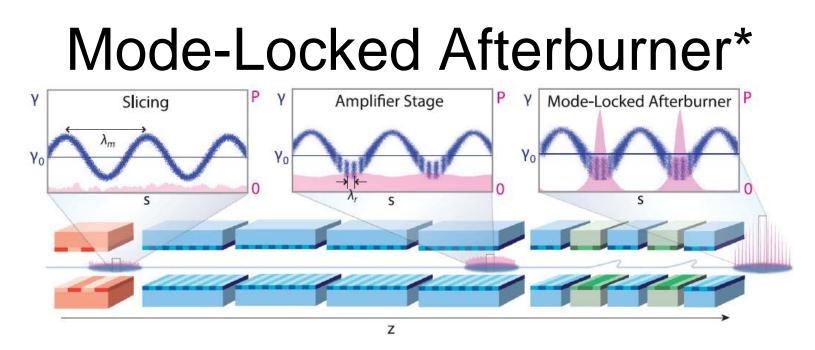
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 040701 (2005)

Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers


Alexander A. Zholents


PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 050702 (2006)

Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses


E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov

Mode-Locked SASE FEL

N. R. Thompson^{1,2,*} and B. W. J. McNeil^{1,†} PRL **100**, 203901 (2008)

Can generate few-cycle pulses – this takes x-ray FELs into the zeptosecond regime (10⁻²¹s)

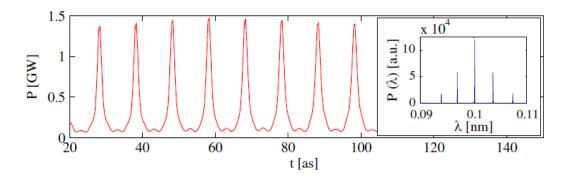


FIG. 4 (color online). Hard x-ray mode-locked afterburner simulation results: Radiation power profile and spectrum after 40 modules. The duration of an individual pulse is \sim 700 zs rms.

*DJ Dunning, BWJ McNeil & NR Thompson, Phys. Rev. Lett. 110, 104801 (2013)

High-Brightness SASE*

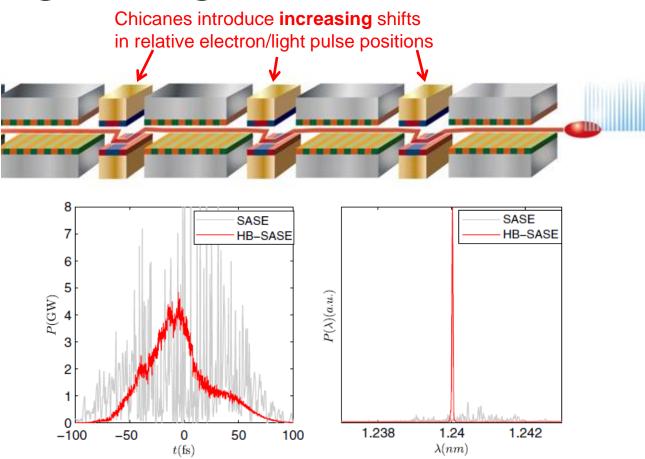


FIG. 4 (color online). Soft x-ray example at $\lambda_r = 1.24$ nm.

Greatly improved temporal coherence over SASE to give close to transform limited pulses in the hard x-ray

*BWJ McNeil, NR Thompson & DJ Dunning, Phys. Rev. Lett. 110, 134802 (2013)

Some advantages of FELs

- Tuneable by varying electron energy or undulator parameters B_u and/or λ_u
- Spectral reach THz, VUV to x-ray
- Cannot damage lasing medium (e⁻-beam)
- High peak powers (>GW's)
- Very bright (>~10³⁰ ph/(s mm² mrad² 0.1% B.W.))
- High average powers 10kW at Jefferson
- Short pulses (<100fs 100's zs (10⁻²¹s))

The next generation of FELs will ensure that these sources are at the fore of light source provision for many years to come. Other sources are unable to meet all of the qualities of FELs by orders of magnitude in at least one respect.

Thank you!