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Radiation interference in an 
undulator and resonant emission
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Non-resonant emission - destructive interference
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The radiation is not phase-matched to the electron trajectory.

Radiation Electric field



Resonant emission - constructive interference
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The radiation and electron trajectory are phase-matched.
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Resonant phase matched emission by an electron

vz



Resonant phase matched emission for harmonics
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2nd Harmonic

3rd Harmonic

Harmonics of the fundamental are also phase-matched.



What are properties of radiation 
from an undulator ?



Resonant emission - constructive interference

The time taken for the electron to travel one undulator period: u
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Resonant emission - constructive interference 
including harmonics and angle from undulator axis
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Condition for constructive interference: cosu
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Where:                         is an integer representing the harmonic number1, 2, 3,n  



Undulator Equation
Substituting in for the average longitudinal velocity of 
the electron, , for the earlier planar case:

For a 3 GeV electron passing through a 5 cm 
period undulator with     = 3, the wavelength of the 
first harmonic (n = 1) on axis ( = 0) is ~ 4 nm
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- In this form also valid for helical undulators
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Including angular 
dependence



The expression for the fundamental resonant wavelength 
shows us the origin of the FEL tunability:
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As the beam energy is increased, the spontaneous emission 
peak moves to shorter wavelengths.

For an undulator parameter ≈1 and u=1cm :

For mildly relativistic beams (≈ 3) :        r ≈ 1mm (microwaves)
more relativistic beams (≈ 30) :      r ≈ 10m (infra-red)
ultra-relativistic beams (≈ 30000) : r ≈ 0.1nm (X-ray)
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Further tunability is possible through Bu and u as Buuua 
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is the electron position at time t, and 

We can calculate the spontaneous emission spectrum 
in the frequency range d and solid angle d around the 
observation direction     by inserting the expression for the 
electron trajectory into the standard formula for far-field 
emission from an accelerated charged particle 
(see e.g. “Classical Electrodynamics” by Jackson , ch. 14)
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Spontaneous undulator spectrum



If we do this we find that the spectrum on axis (          ) is :ˆn z
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Spontaneous spectrum



On axis spontaneous spectrum therefore looks like :

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d2I
dd

x

Main features :
• Spectrum strongly peaked at frequency r

i.e. at wavelength
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Summary Undulator Radiation I

Note 2nd harmonic not shown here



Undulator radiation (top) focused on a spot (bottom) by a refractive lens. 
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Summary Undulator Radiation II



Undulator radiation
Setup>trajectory>undulator

Code available at: http://www.shintakelab.com/en/enEducationalSoft.htm



Electron bunching in a fixed 
radiation field



The electron-radiation interaction
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The Lorentz force (electron dynamics)

Maxwell wave equation* (radiation evolution)

Both equations must be solved together simultaneously 

(self-consistently) to fully describe the FEL interaction

*Neglect static fields (space charge effects) – Compton limit
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Hendrick Antoon 
Lorentz 

The Lorentz Force Equation:

The rate of change 
of electron energy

How the electron is effected by the resonant radiation



Slow energy exchange
The rate of change of electron energy:  2
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Slow energy exchange
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The first sin term on RHS is a wave with phase velocity in z direction of:
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So, a resonant electron with average speed         will have zj constantjd
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The second sin term on RHS is a wave with speed in z direction of:
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Resonant emission – electron energy change

Energy of electron changes 
‘slowly’ when interacting with 
a resonant radiation field.



u

e-

Resonant emission – electron energy change
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For an electron with a different phase with 
respect to radiation field:
Rate of electron energy change is ‘slow’ but changes 
periodically with respect to the radiation phase 
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Resonant emission – electron bunching

Axial electron velocity
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Electrons bunch at resonant radiation 
wavelength – coherent process
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Resonant emission - constructive interference
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3rd Harmonic

2nd Harmonic

Fundamental

Even harmonics do not allow a slow exchange of energy



Bunched electrons can exchange 
energy coherently with radiation
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Electron bunching in a self-
consistent radiation field



  
1

The transverse current density
N

j
j

J e v r r t 


  
  

Bunched electrons drive radiation 

Radiation field bunches electrons

Basic FEL mechanism
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Bunched electrons drive radiation 

Radiation field bunches electrons

Basic FEL mechanism
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These equations are assumed ‘slowly varying’ i.e. any evolution is 
assumed slow with respect to the radiation/undulator period. They can be 
subsequently averaged over a radiation/undulator period. 4c rl  
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Conventional laser Vs FEL pulses 

Active medium

Undulator
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Partial form of wave equation 
describes slippage of radiation 
envelope through the electron pulse 
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Linear analysis
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Steady-state 
approx.: “No pulses”

Assume 
that:

Where:

The steady-state approximation can 
be thought of as the continuous e-

beam limit where the electron ‘pulse’ 
has no beginning or end. In this case 
one can see that the radiation field 
can only be a function of the distance 
through the undulator and no pulse 
effects can be present.
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Linear analysis
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Differentiating linear equations:
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Linear analysis
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Real parts give oscillatory solutions.

Imaginary parts give exponential growth:

and exponential decay:
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Constants of motion
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Two constants of motion can be obtained from 
these equations in the steady-state limit:
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Where the constant is the variables’ initial values.
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The first constant above corresponds to conservation of 
energy. The second, incorporating phase dependent 
terms is related to the Hamiltonian of the system. 
Opposite is plotted the linear and non-linear (numerical) 
solutions of the equations for a resonant interaction 
(δ = 0). From the definition of :
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and the saturated scaled field |Asat|~1, it is seen that ρ
is a measure of the efficiency if the interaction.



The pendulum equation 
and phase-space
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separatrix

The electrons can be thought of as a collection of pendula initially distributed 
over a range of angles with respect to the vertical. The radiation field is 
analogous to the gravitational field. The separartrix defines the boundary 
between pendula that librate and rotate. Of course in the FEL equations 
above, unlike a gravitational field, the radiation field can evolve in both 
amplitude a, and phase    .


