

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics

Lecture 7: PET

Dr Barbara Camanzi barbara.camanzi@stfc.ac.uk

Course layout

Day	AM 09.30 – 11.00	PM 15.30 – 17.00
Week 1		
6 th June	Lecture 1: Introduction to medical imaging	Lecture 2: Detectors for medical imaging
7 th June	Lecture 3: X-ray imaging	
8 th June		Tutorial
Week 2		
13 th June	Lecture 4: Radionuclides	
14 th June	Lecture 5: Gamma cameras	Lecture 6: SPECT
16 th June	Lecture 7: PET	
Week 3		
22 nd June	Tutorial	

Books

- 1. N Barrie Smith & A Webb Introduction to Medical Imaging Cambridge University Press
- 2. Edited by M A Flower Webb's Physics of Medical Imaging CRC Press
- A Del Guerra Ionizing Radiation Detectors for Medical Imaging World Scientific
- 4. W R Leo

Techniques for Nuclear and Particle Physics Experiments Springer-Verlag

Positron Emission Tomography (PET)

Ref. 1 – Chapters 3.13 to 3.21

- Tomographic technique that uses radiotracers administered to the patient \rightarrow emission imaging
- Basic principle:
 - 1. Radiotracers used undergo β^+ decay \rightarrow emit e⁺
 - 2. e^+ travels on average 0.1÷3 mm in tissue depending on radiotracer \rightarrow scatters \rightarrow loses energy \rightarrow comes to rest
 - 3. e^+ at rest combines with atomic e^- to form positronium
 - 4. Positronium decays emitting two back-to-back 511 keV γ -rays

β^+ decay

- Proton-rich or neutron deficient radionuclide ejects β^+ -particle = e⁺ = +1 charge in the process: $p \rightarrow n + e^+ + \nu$
- Three-body decay → energy spectrum of e⁺ = continuum up to a maximum
- $Z \rightarrow Z 1$, A and atomic weight remain the same

Example

$${}^{15}_{8}O \xrightarrow{\beta^+ \text{decay}} {}^{15}_{7}N + \beta^+ + \nu + E$$

E = shared randomly between v and kinetic energy of β^+

Average kinetic energy $\langle E_{\beta^+} \rangle \cong E_{\beta^+}^{max}/3$

Common radiotracers for PET

Radionuclide	Half-life (min)	β^+ fraction	Max . kinetic energy (Mev)	Average β^+ range in water	Clinical application
Radiotracer				(mm)	
¹¹ C	20.4	0.99	0.96	1.0	Cardiac
¹¹ C-palmitate					metabolism
¹³ N	9.96	1.00	1.19	2.0	Cardiac blood
¹³ NH ₃					flow
¹⁵ 0	2.07	1.00	1.72	2.0	Cerebral blood
$H_2^{15}O$					flow
¹⁸ F	109.7	0.97	0.64	0.6	Oncology,
¹⁸ <i>FDG</i>					inflammation, cardiac viability
⁸² <i>Rb</i> ¹	1.27	0.95	3.35	2.8	Cardiac
⁸² <i>RbCl</i> ₂					perfusion

¹Only radioisotope produced at on-site generator and not cyclotron

¹⁸F-fluoro-2-deoxy-D-glucose (FDG)

- Most common radiotracer used in 80% of PET studies
- FDG injected into blood stream → HO^{M^{*}} transported to cells across body

- Uptake depends on rate of glucose utilization = glucose metabolism:
 - High glucose metabolic rate characteristic of many tumours \rightarrow hot spots in oncological PET scans

PET -vs- SPECT

- Main difference:
 - Two γ -rays (PET) instead of one (SPECT)

Advantages

Much higher SNR_{PET} arises from:

- 1. Collimation not required \rightarrow no absorption of γ -rays
- 2. Higher $E_{\gamma}^{PET} \rightarrow \text{less } \gamma$ -rays attenuation in tissue
- 3. Use of complete ring of detectors

Significantly better spatial resolution

Two back-to-back γ -rays \rightarrow two signals in the ring of detectors \rightarrow two points \rightarrow intrinsic line-of-response (LOR) \rightarrow no collimation needed to select directions

Disadvantages

(On-site) cyclotron needed to produce β^+ emitters

High associated cost

PET components

- Detection unit = full ring of scintillating detectors surrounding the patient
- Scintillation read-out chain:
 - PMTs \rightarrow convert light into electric signal
 - Pulse height analyzer
- Annihilation coincidence detection unit

Scintillating detector ring

- Large number of small scintillation crystals placed in circular ring surrounding patient with diameter:
 - 70 or 85 cm for abdominal scanner
 - \sim 45 cm for head scanner
- Up to 48 multiple rings staked axially with retractable lead collimation septa in between → head/foot FOV = ~16 cm
- Ideal geometry = one crystal coupled to one PMT → better spatial resolution but too expensive
- Geometry = 'block detector' design

Courtesy Mike Partridge (Oxford)

'Block detector' design

Courtesy Mike Partridge (Oxford)

- Large block of scintillating material ~50 × 50 × 30 cm³
- Partial cuts through filled with reflective material → prevent light formed at top of crystal to produce very broad LSF while travelling 30 cm to PMT

'Block detector' geometry

Courtesy Piero Posocco (Imperial College)

- Geometry = 8×8 array of cuts $\rightarrow 64$ 'crystals' of $\sim 6 \times 6 \text{ cm}^2$ area and 30 cm length coupled to 4 PMTs \rightarrow multiplexing factor of 16
- The *X*-Y position measured relative to the centre of the block of four PMTs is:

$$X = \frac{(a+b-c-d)}{(a+b+c+d)}$$
$$Y = \frac{(a-b+c-d)}{(a+b+c+d)}$$

Scintillation crystals

- Ideal scintillation material for use in PET has:
 - 1. High detection efficiency for 511 keV γ -rays
 - 2. Short decay time to allow for short coincidence resolving time
 - 3. High light yield to reduce the complexity and cost of the system
 - 4. Emission wavelength near 400 nm that corresponds to maximum sensitivity for standard PMTs
 - 5. Optical transparency at emission wavelength to minimise reabsorption
 - 6. Index of refraction close to 1.5 to ensure efficient light transmission between crystal and PMT

Common scintillator materials for PET

	Decay time (ns)	Relative light yield ¹	Efficiency	Emission wavelength (nm)	Refractive index
BGO	300	0.15	0.72	480	2.15
LSO(Ce)	40	0.75	0.69	420	1.82
BaF ₂	0.8 prim 600 sec	0.12	0.34	220, 310	1.49
GSO(Ce)	60 prim 600 sec	0.3	0.57	430	1.85
Nal(Tl)	230 prim 10 ⁴ sec	1.0	0.24	410	1.85

¹Relative to NaI(Tl)

- Scintillator must be 2 cm or more in thickness for high sensitivity
- NaI(Tl) =low efficiency for 511 keV γ -rays \rightarrow not used in PET

Scintillation read-out chain

PMTs

 Standard operation → scintillation light = optical photons converted into an amplified electric signal by the PMTs

Pulse height analyzer

- Multi-channel analyser receives in input the PMT signal and converts it into a 'logic pulse' typically 6÷10 ns long if PMT signal amplitude is within pre-set range
- 'Logic pulse' sent to coincidence unit

Data acquisition

- Two different modes:
 - 1. 2D multi-slice mode
 - 2. Full 3D mode \rightarrow becoming more common due to far superior *SNR*

2D

Collimation septa extended

3D

- Collimation septa retracted
- Requires fully 3D reconstruction algorithm

2D PET -vs- 3D PET

2D

- Advantages:
 - 1. Reduced amount of scattered γ -rays
 - 2. Uniform sensitivity profile along axial direction

3D

- Advantages:
 - 1. Factor 10 higher sensitivity than 2D PET \rightarrow higher *SNR*
 - 2. For same SNR as in 2D PET \rightarrow two order magnitude reduction in scan time
- Disadvantages:
 - More random coincidences and scattered γ-rays
 - 2. Sensitivity profile in axial direction higher at the centre than at ends

2D PET and 3D PET in whole-body PET

 Whole-body PET = bed is moved several times along head/foot directions to cover entire body length

2D

 Uniform sensitivity profile along axial direction → overlap between successive bed positions = only ~1÷2 cm

3D

 Non-uniform sensitivity profile along axial direction → overlap between successive bed positions = as high as 50% → more bed positions required

2D multi-slice acquisition

UNIVERSITY OF

Courtesy Piero Posocco (Imperial College)

- Image planes formed:
 - 1. Between two crystals in same ring = direct planes
 - 2. From crystals in adjacent rings = cross planes
- For system with n rings:
 - n direct planes
 - n-1 cross planes
 - Total 2n-1 planes

Full 3D acquisition

 Image planes in a much more complicated configuration

Courtesy Piero Posocco (Imperial College)

Annihilation coincidence detection unit

Courtesy Piero Posocco (Imperial College)

• Time

- Fixed 'coincidence resolving time' = time window for each PET system
- Each signal recorded in a crystal given a time-stamp with precision 1÷2 ns to account for different arrival time of two γ-rays at detector ring
- Position
 - Geometric 'coincidence arcs'
 two arcs at 180° formed by set number of crystals

Annihilation coincidence detection

- Time
 - $-1^{st} \gamma$ -ray detected at time $t_1 = 0$
 - $-2^{nd} \gamma$ -ray detected at time t_2
- Position
 - 1st γ -ray detected assigned to crystal 1
 - $-2^{nd} \gamma$ -ray detected assigned to crystal 2
- Coincidence
 - If t_2 falls into time window $\rightarrow 2^{nd} \gamma$ -ray assigned to same annihilation
 - If crystals 1 and 2 are operated in coincidence \rightarrow two γ -rays accepted as 'true event' and LOR drawn

Types of coincidence events in PET

True

Both γ -rays escape without scatter and interact in detectors

PET scanner incorrectly records that an event occurred on this line

Scatter One or both γ -rays scatter in tissue PET scanner incorrectly records that an event occurred on this line

Random (accidental)

Two γ -rays from separate emissions strike the detectors at the same time

Scatter events

- Two main sources of scatter:
 - 1. Within the body
 - 2. Within the scintillator
- Leads to reduction in image contrast

Scatter contribution

- High contribution due to:
 - 1. Only one of two annihilation γ -rays has to scatter
 - 2. BGO and LSO poor intrinsic energy resolution compared to NAI(Tl) = cannot discriminate scattered from unscattered γ -rays \rightarrow scatter events significant fraction
 - 1. Ex: detection window for BGO 450-650 keV while γ -ray scattered at 45° loses only ~115 keV
 - 3. Higher in 3D PET due to elimination of collimator

2D	3D
10÷15%	Up to 50%

Random coincidences

- Random coincidences are due to two separate disintegrations occurring very close in time
- Uniformly distributed across FOV → significant errors in areas of very low activity
- Rate $R_{randoms}$ for a time window τ is given by: $R_{randoms} = R_{S_i} \times R_{S_j} \times 2\tau$

 R_{s_n} = detection rate at scintillation detector n

- Contribution:
 - For head scanners $\sim 20\%$
 - For body scanners close to 50%

Image formation

- Two steps:
 - 1. Correction of data for:
 - a. Attenuation effects
 - b. Scatter
 - c. Accidental and multiple coincidences
 - d. Dead-time
 - 2. Tomographic image reconstruction = SPECT \rightarrow CT reconstruction methods:
 - a. Filtered backprojection method
 - b. Iterative method

Attenuation correction

- Old method (pre PET/CT)
 Identical to SPECT = transmission-based
 calibration with ⁶⁸Ge used to estimate attenuation
- Current method (PET/CT)

CT images segmented according tissue type¹ \rightarrow standard value of μ at 511 keV assigned \rightarrow attenuation map smoothed to match PET resolution and applied to PET image

¹Muscle, lipid, bone, etc.

Scatter correction

- Three different approaches:
 - 1. Background subtraction approach \rightarrow simplest method
 - a. Measure signal intensity outside the patient \rightarrow fit values to a Gaussian to estimate amount of scatter in patient = function
 - b. Function subtracted from raw data \rightarrow corrected image
 - c. Works well for homogeneous organs (brain) but not abdomen
 - 2. Dual-energy window approach
 - a. Two options:
 - i. Lower window 190÷350 keV + upper window 350÷650 keV
 - ii. Lower window $450 \div 650 \text{ keV} + \text{upper window } 550 \div 650 \text{ keV} \rightarrow \text{overlap} =$ Estimation of trues method (ETM)
 - b. Scatter data scaled appropriately and subtracted from data in photopeak window \rightarrow corrected image
 - 3. Iterative reconstruction approach
 - a. Uses simulations and CT-derived attenuation maps
 - b. Most sophisticated, computationally intensive and time-consuming

Random coincidences corrections

• Two methods:

- 1. Use of additional parallel timing circuitry = most common
 - a. Second time window starts typically 60 ns after event is recorded
 - b. Standard window measures total number of coincidences + delayed window records only random events → subtracted from total
- 2. Use relation between $R_{randoms}$ and R_{S_i}
 - a. Measured values of R_{S_i} used to determine $R_{randoms} \rightarrow$ subtracted from acquired data

Multiple coincidences corrections

- Multiple = more than two events recorded during one time window
- One method:
 - 1. Total number of multiple coincidences $R_{multiple}$ estimated as:

 $R_{multiple} \approx R_{randoms} \times R_{S_i} \times R_{S_j} \times \tau$

2. Multiple event coincidences discarded before image reconstruction

Dead-time

- Maximum count rate the system can record due to components' finite response and recovery time
- Fractional dead time = ratio of measured count rate to theoretical count rate with zero dead-time
- Major sources of dead-time in PET:
 - 1. Time taken to integrate the charge from the PMTs
 - 2. Processing time of a coincidence event
 - 3. Multiple coincidences \rightarrow data are discarded
- Corrections performed by:
 - 1. Characterising the dead-time of each component
 - 2. Estimating the number of multiple coincidences expected

Sensitivity

• True coincidence count rate R_{true} for a β^+ -emitter in air near midpoint between pair of detectors is: $R_{true} = R_e^+ \varepsilon^2 (2G)$

 $R_{e^+}[s^{-1}] = rate of e^+$

$$\varepsilon = \frac{N_{recorded}^{\gamma}}{N_{hitting}^{\gamma}} = \text{intrinsic detector efficiency}$$

- $G = \frac{A}{4\pi r^2}$ = geometric efficiency of individual detector of effective area *A* and radius *r*
- Determined primarily by detector efficiency and solid angle coverage

Signal-to-noise ratio

- Factors affecting SNR:
 - 1. Dose administered to patient
 - 2. Targeting efficiency
 - 3. γ -ray attenuation in body \rightarrow lower than in SPECT due to higher E_{γ}
 - 4. System sensitivity \rightarrow greater than in SPECT due to lack of collimator and higher E_{γ}

	SPECT	2D PET	3D PET
γ -rays detected	0.01÷0.03%	0.2÷0.5%	2÷10%

- 5. Image acquisition time
- 6. Image post-processing

Contrast-to-noise ratio

- Factors affecting CNR:
 - 1. Same factors affecting SNR
 - 2. Non-specific uptake of radiotracer in healthy tissues surrounding pathology being studied
 - 3. Corrections for Compton scattered γ -rays

Spatial resolution

- Factors affecting the spatial resolution:
 - 1. Effective e^+ range in tissue $\rightarrow \delta R_{range}$
 - 2. Non-colinearity of two γ -rays $\rightarrow \delta R_{180^{\circ}}$
 - 3. Dimension of the scintillating crystals $\rightarrow \delta R_{detector}$
- Overall spatial resolution δR_{sys} given by:

$$\delta R_{sys} = \sqrt{\delta R_{range}^2 + \delta R_{180^\circ}^2 + \delta R_{detector}^2}$$

• 'Double detection' of two γ -rays reduces depth dependence of $PSF \rightarrow$ spatial resolution less dependent from depth in body than in SPECT

Effective e⁺ range

- The e⁺ travels a certain distance before coming to rest → effective e⁺ range in tissue → error in the determination of the point where e⁺ was produced
- This contribution is intrinsic and cannot be eliminated

Effective e^+ range distribution

• Example of an effective e⁺ range distribution:

• The distribution is better described by the root mean square rms or σ than FWHM

Effect of e⁺ range on spatial resolution

- Effective e⁺ range increases → spatial resolution decreases with:
 - 1. Maximum kinetic energy of the emitted e^+ = the higher the energy the longer distance e^+ needs to travel to lose all its energy
 - 2. The tissue density = the lower the density of the tissue the less interactions e^+ undergoes per unit length \rightarrow the less energy e^+ loses per unit length \rightarrow the longer distance e^+ needs to travel to lose all its energy

- **Non-colinearity**
 - Non-colinearity of two γ rays = small random deviation from 180° angle between two trajectories due to residual motion of e^+ at point of annihilation
 - **Distribution in angles** between two trajectories centred around 180° and has $FWHM \cong 0.5^{\circ}$

Effect of non-colinearity on spatial resolution

 The larger the diameter of the detector ring the greater the effect on the spatial resolution

$$\delta r_{180^{\circ}} = \frac{D}{2} \times \frac{0.25\pi}{180} = 0.0022 \times D$$

D = diameter of the PET scanner

Effect of scintillating crystals dimension on spatial resolution FORD

UNIVERSITY OF

- The smaller the scintillating crystals the better the spatial resolution due to:
 - 1. Area = the spatial resolution decreases with area = given approximately by half the crystal diameter The precision in locating the position = spatial resolution at which the γ -ray reaches the scanner increases for crystals with smaller area
 - 2. Length = the spatial resolution decreases with length The uncertainty in the depth-of-interaction (DOI) = point within the crystal where the γ -ray is absorbed and creates scintillation increases for longer crystals \rightarrow the spatial resolution decreases for longer crystals

Factors affecting the spatial resolution

- Effective e⁺ range in tissue = distance increases with:
- Non-colinearity of two γ-rays = small random deviation from 180° angle between two trajectories

 → distribution around 180° with FWHM ≅ 0.5° →
 the larger the diameter of the detector ring the greater the effect
- Dimension of the scintillating crystals → spatial resolution given by approximately half the crystal diameter + depth-of-interaction uncertainty increases with length of crystal

Time-Of-Flight (TOF) PET

UNIVERSITY OF

- Very accurate measurement of exact time at which each γ -ray arrives at the detector \rightarrow localisation within LOR:
 - Time difference between signals from two crystals measured
 - Annihilation point along LOR directly calculated
- Technology for TOF PET:
 - Fast scintillating materials:
 - LSO material of choice: coincidence time = \sim 450 ps instead of 3 ns for BGO
 - Fast photon detectors:
 - SiPMs being investigated

TOF in context

• For a system with timing resolution Δt , the position resolution Δx along LOR is given by:

$$\Delta x = \frac{c\Delta t}{2}$$

c =speed of light

- Timing resolution of commercial scanners $\sim 500 \text{ ps}$
- R&D goals:

∆ <i>t</i> (ps)	∆ <i>x</i> (cm)
100	3
30	< 1

Advantages of TOF PET

- ~500 ps timing resolution \rightarrow ~7.5 cm spatial resolution > spatial resolution of conventional scanners
- Length of LOR constrained down to ~7.5 cm from that of conventional scanners (\gg 7.5 cm) \rightarrow statistical noise in the measurement reduced \rightarrow *SNR* improved
- Noise variance¹ reduction factor *f* for patient of size *D*:

$$f = \frac{D}{\Delta x} = \frac{2D}{c\Delta t}$$

• Better $SNR \rightarrow$ higher sensitivity and specificity

Hybrid PET/CT

- Stand-alone PET scanner almost entirely replaced by hybrid PET/CT scanners:
 - 1. Two separate systems one next to the other
 - 2. Bed that slides between two systems
- Rationale:
 - Improved attenuation correction
 - Ability to fuse anatomical (morphological) and functional information

Image fusion in PET/CT

Courtesy Mike Partridge (Oxford)

Clinical applications of PET/CT

- PET/CT scans currently represent ~5÷10% of all nuclear medicine imaging and increase each year
- Clinical investigations:
 - 1. Oncology (~90% of all investigations)
 - Whole body PET imaging used to identify both primary and secondary metastatic disease away from primary tumour
 - 2. Cardiology

UNIVERSITY (

FORD

3. Neurology

Whole-body PET/CT

- Used in oncology for staging of cancer = determined based on number of secondary lesions = metastases spread away from primary lesion
- Radiotracer used: *FDG* → metabolised more by malignant cells
- Typical scan time 30÷60 min

PET/CT in brain imaging

- Used to investigate:
 - Neurodegenerative dementias such as Alzheimer's (AD) and Parkinson's diseases and distinguish them from from other dementias → AD characterised by low metabolism

- 2. Brain tumours: also to distinguish recurrences from radiation induced necrosis
- 3. Trauma
- 4. Developmental abnormalities
- 5. Epilepsy

Cardiac PET/CT studies

 Used for the study of coronal artery diseases → myocardial viability and perfusion

- PET/CT use in cardiac studies is increasing \rightarrow where available is used instead of SPECT