

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics

Lecture 6: SPECT

Dr Barbara Camanzi barbara.camanzi@stfc.ac.uk

Course layout

Day	AM 09.30 – 11.00	PM 15.30 – 17.00
Week 1		
6 th June	Lecture 1: Introduction to medical imaging	Lecture 2: Detectors for medical imaging
7 th June	Lecture 3: X-ray imaging	
8 th June		Tutorial
Week 2		
13 th June	Lecture 4: Radionuclides	
14 th June	Lecture 5: Gamma cameras	Lecture 6: SPECT
16 th June	Lecture 7: PET	
Week 3		
22 nd June	Tutorial	

Books

- 1. N Barrie Smith & A Webb Introduction to Medical Imaging Cambridge University Press
- 2. Edited by M A Flower Webb's Physics of Medical Imaging CRC Press
- A Del Guerra Ionizing Radiation Detectors for Medical Imaging World Scientific
- 4. W R Leo

Techniques for Nuclear and Particle Physics Experiments Springer-Verlag

Single Photon Emission **OXFORD** Computed Tomography (SPECT)

Ref. 1 – Chapter 3.9

- Basic principle:
 - Source:
 - Radioisotope usually emitting a single γ -ray per nuclear disintegration 1. \rightarrow from where 'Single Photon'
 - Radiotracer injected in patient $\rightarrow \gamma$ -rays are emitted from inside the 2. body \rightarrow from where 'Emission'
 - Provides 3D images using CT techniques \rightarrow from where 'CT':
 - 1. System rotates around patient \rightarrow detects γ -rays at different angles \rightarrow 2D projections¹
 - Tomographic reconstruction algorithm applied to 2D projections \rightarrow 3D 2. images

¹Signal at each image point calculated as sum = projection of radioactivity along line through body

SPECT –vs– CT

• SPECT similar to CT

	SPECT	СТ
Radiation	γ-rays	X-rays
Source location	Internal to body of patient Injected into patient	External to body of patient
Type of imaging	Emission	Transmission

SPECT scanner components

- Two or three gamma cameras = heads =multiheaded systems → acquire multiple views simultaneously
- 2. Converging collimator often used inside gamma cameras \rightarrow increases *SNR*
- Moving bed often attached → allows whole body studies

Two heads

Three heads

Heads positioning

- Heads can be positioned at different angles and locations and moved inwards and outwards to make distance to organ under study as close as possible:
 - Outwards = to accommodate body
 - Inwards = to make gamma cameras close to the brain

After Piero Posocco (Imperial College)

Data acquisition

- Rotation of gamma cameras around patient → different thickness of body in FOV = different source – detector distance at different positions that affects:
 - 1. Degree of tissue attenuation
 - 2. Distribution of γ -rays in body
 - 3. Spatial resolution: due to diverging-cone shape of line of response defined by collimator
- As a result:
 - Projections at 180° to each other not identical
 - 360° rotation known as conjugate counting needed = combines data acquired from opposing views \rightarrow reduces attenuation effects and gives more uniform resolution

360° rotation orbits

Circular orbit

Detection head

Courtesy Piero Posocco (Imperial College)

- Higher spatial resolution
- Needs complex path for detector head

Typical acquisition parameters

Parameter	Value
Number of angular views	64÷128
Linear sampling pitch	2÷3 mm
Data collection	Over 360°
Display matrix	64 × 64 or 128 × 128
FOV	~40÷60 cm trans-axially
Axial coverage ¹	30÷40 cm

¹Achieved by stacking images

Image formation

- Two steps:
 - 1. Application of corrections to the data in two steps:
 - a. Scatter
 - b. Depth-dependent attenuation
 - 2. Image reconstruction

Scatter

- Events acquired in energy window of width that depends on energy resolution of gamma camera
 → γ-rays scattered at large angles can be still accepted
- Ex.: for a system with energy resolution 20% and detection window = $127 \div 153 \text{ keV} \rightarrow 140 \text{ keV} \gamma$ -rays from ${}^{99}Tc^m$ scattered up to 50° will fall in the detection window \rightarrow will be accepted
- Contribution from scattered events:
 - Typically of same order as unscattered events even with collimator

Scatter contribution

- Contribution from scattered γ-rays typically of same order as unscattered γ-rays even with lead collimator
- Number of scattered γ -rays greatest closer to areas of high concentration of radiotracer \rightarrow position dependent correction
- Scattered γ-rays have lost position information → get assigned to wrong pixel → overestimation of radioactivity in that pixel → image contrast reduced → clinically relevant details may be obscured

Scatter correction methods

- Two methods:
 - Dual-energy window approach = most common method
 - Triple-energy window approach
- Ratio of scattered to unscattered γ -rays may be as high as 40% even when using narrow energy windows

Dual-energy window approach

- Two windows:
 - 1. Primary photopeak window centred at photopeak
 - 2. Secondary scatter sub-window set to lower energy range
- Assumptions:
 - 1. Contributions in windows:
 - a. Photopeak window: scattered and unscattered γ-rays
 - b. Scatter sub-window: only scattered γ-rays
 - 2. Constant ratio between signal in photopeak window and signal in scatter window

After Piero Posocco (Imperial College)

Dual-energy window data processing

- Steps:
 - 1. Projections formed separately from data in photopeak and scatter windows
 - 2. Scatter projections scaled by scaling factor
 - 3. Scaled scatter projections subtracted from photopeak projections
- Limitation: multiple scatter more likely in scatter window → spatial distribution of scatter somewhat different in photopeak and scatter windows

Dual-energy window scaling factor

- The scaling factor *SF* is given by: $SF = \frac{W_P}{2W_S}$
 - W_P = width photopeak window
 - W_S = width scatter window
 - 2 = factor determined experimentally
- SF depends on:
 - 1. Energy resolution of gamma camera \rightarrow choice of detection window
 - 2. Size of object to be scanned

Triple-energy window approach

- Three windows:
 - 1. Primary photopeak window centred at photopeak and with width narrower than gamma camera detection window $\rightarrow 15\%$ width for a gamma camera with width of detection window 20%
 - 2. Two secondary very narrow scatter sub-windows on both sides of photopeak window of width 3 keV centred on the edge of gamma camera detection window sides

Triple-energy window data processing

- Steps:
 - 1. Projections formed separately from data in photopeak and two scatter windows
 - 2. Scatter projections scaled by width of scatter windows
 - 3. Scaled scatter projections from two windows added
 - 4. Resultant scatter projections multiplied by half width of photopeak window
 - 5. Final scatter projections subtracted from photopeak projections

Attenuation

- γ -rays from radiotracer inside body travel through patient to get to detector \rightarrow attenuation
- Attenuation depends from:
 - 1. Amount of tissue γ -rays go through $\rightarrow \gamma$ -rays from deeper in the body / further away from detector more attenuated
 - 2. $E_{\gamma} \rightarrow$ lower energy γ -rays more attenuated
- SPECT measures radiotracer distribution and not attenuation → attenuation creates image artefacts → correction
- Attenuation = bigger magnitude effect than scatter

Attenuation contribution: an example

After Piero Posocco (Imperial College)

- Simulated reconstructed images:
 - Three images from 20 cm diameter cylindrical phantom loaded with three different radiotracers ${}^{99}Tc^m$, ${}^{131}I$, ${}^{201}Tl \rightarrow$ γ -rays of different energies
 - One image with no attenuation
- Reconstructed image:
 - Uniform when there is no attenuation
 - Non uniform due to attenuation

Attenuation correction with conjugate counting

Courtesy Piero Posocco (Imperial College)

- d_1, d_2 = distances source detector along opposing directions
- I_0 = unattenuated signal
- $I_1 = I_0 e^{-\mu d_1}$ = signal along direction 1
- $I_2 = I_0 e^{-\mu d_2}$ = signal along direction 2
- $\mu =$ linear attenuation coefficient

- μ assumed constant throughout patient to determine correction for attenuation = attenuation correction factor *ACF*
- Geometric mean *I_m* of two signals *I*₁ and *I*₂ measured in opposing directions is then given by:

$$I_m = \sqrt{I_1 \cdot I_2} = \sqrt{I_0 e^{-\mu d_1} \cdot I_0 e^{-\mu d_2}}$$

= $I_0 \sqrt{e^{-\mu (d_1 + d_2)}} = I_0 e^{-\mu D/2}$

• The unattenuated signal I_0 is given by the attenuated signal I_m multiplied by *ACF*:

 $I_0 = I_m \times ACF$

- *ACF* is therefore given by: $ACF = e^{\mu D/2}$
- Both µ and D need to be measured to determine ACF

Attenuation correction methods

• Two analytical methods:

UNIVERSITY OF

XFORD

- Chang's multiplicative method
- Transmission scan method
- One 'empirical' method:
 - Mean shape and attenuation of an average patient used

Chang's multiplicative method

• Steps:

KFORD

- 1. Initial image of radiotracer distribution formed by filtered backprojection without corrections \rightarrow attenuation ignored
- 2. Initial image used to estimate outline contour of patient \rightarrow distance x that γ -rays have to travel through tissue
- 3. Attenuation correction factor *ACF* calculated for each pixel in reconstructed image as:

 $ACF = e^{\mu x}$

 $\mu = \text{linear attenuation coefficient}$

4. Attenuation correction factor is applied to each pixel to generate corrected reconstructed image = each projection is scaled up by the attenuation correction factor

Chang's multiplicative method limitation

- Assumption used by the method = tissue attenuation coefficient uniform through part of body imaged
- Validity of assumption:
 - Valid for brain and abdomen
 - Not valid for thorax where tissue attenuation is highly spatially dependent
- Method can only be used for brain and abdomen imaging but not for cardiac or thoracic imaging

Transmission scan method

- A transmission scan is acquired simultaneously with a patient scan
- Transmission scan = external ${}^{153}Gd$ source emitting $\sim 102 \text{ keV } \gamma$ -rays \rightarrow measures tissue attenuation \rightarrow equivalent to low-statistics, low-spatial-resolution CT scan
- ¹⁵³Gd half-life = 242 days → radioactivity constant over several months → does not need replacing frequently

Transmission scan acquisition

- Two scans performed simultaneously:
 - 1. Patient scan with ${}^{99}Tc^m$ = emission scan
 - 2. Transmission scan with external ^{153}Gd source
- $E_{\gamma}^{Gd} \ll E_{\gamma}^{Tc} \rightarrow$ two scans acquired at same time using dual-energy window
- Third window between other two can be used to correct scattered γ -rays leaks from ${}^{99}Tc^m$ to ${}^{153}Gd$ windows
- Separate transmission scan acquired without patient → no object in front of gamma camera = reference scan

Transmission scan correction calculation

- Projections λ calculated comparing ${}^{153}Gd$ signal intensities with I_{trans} and without I_{ref} the patient: $\lambda = -\ln \frac{I_{trans}}{I_{ref}}$
- Map of attenuation coefficients μ at each position calculated from projections:

$$I_{trans} = I_{ref} e^{-\mu x}$$

Map of attenuation coefficients used to correct image

Image reconstruction

- SPECT uses CT techniques to reconstruct 2D axial slices from acquired projections and from there 3D distribution of radionuclides → two classes of reconstruction algorithms used:
 - 1. Filtered backprojection techniques = identical to CT
 - Iterative techniques: computer intensive → methods / algorithms developed to speed it up, including using a subset of acquired profiles → most common algorithm = maximum-likelihood expectation-maximum (ML-EM) method

Iterative reconstruction

Page 30/32

Common radiotracers for SPECT

Radiotracer	E_{γ} (keV)		
Myocardial perfusion (rest/stress)			
²⁰¹ <i>Tl</i>	68÷80		
⁹⁹ <i>Tc</i> ^{<i>m</i>} -Sestamibi	140		
⁹⁹ <i>Tc</i> ^{<i>m</i>} -Tetrofosmin	140		
Cerebral perfusion			
⁹⁹ <i>Tc</i> ^{<i>m</i>} -HMPAO	140		
⁹⁹ <i>Tc</i> ^{<i>m</i>} -ECD	140		
Oncology			
⁶⁷ Ga	93, 185, 300		
²⁰¹ <i>Tl</i>	68÷80		
⁹⁹ <i>Tc</i> ^{<i>m</i>} -Sestamibi	140		
Somastatin receptors: ⁹⁹ <i>Tc</i> ^{<i>m</i>} -Depreotide, ¹¹¹ <i>In</i> -Octreotide	140 ($^{99}Tc^m$), 171, 245 (^{111}I)		
Labelled antibodies, peptides			

Main clinical applications

- Myocardial perfusion studies = majority of SPECT scans:
 - To detect coronary artery diseases or myocardial infarction
 - Single image = multi-slice data set = typically 100,000 counts
 - Spatial resolution ~14 mm
- Brain studies:
 - To detect areas of reduced blood flow associated with stroke, epilepsy or neurodegenerative diseases / conditions such Alzheimer
 - Single image = multi-slice data set = typically 500,000 counts
 - Spatial resolution ~7 mm ← distance source detector smaller than in myocardial studies