Joint CI-JAI advanced accelerator lecture series

Imaging and detectors for medical physics

Lecture 6: SPECT

Dr Barbara Camanzi
barbara.camanzi@stfc.ac.uk
<table>
<thead>
<tr>
<th>Day</th>
<th>AM 09.30 – 11.00</th>
<th>PM 15.30 – 17.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th June</td>
<td>Lecture 1: Introduction to medical imaging</td>
<td>Lecture 2: Detectors for medical imaging</td>
</tr>
<tr>
<td>7th June</td>
<td>Lecture 3: X-ray imaging</td>
<td></td>
</tr>
<tr>
<td>8th June</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13th June</td>
<td>Lecture 4: Radionuclides</td>
<td></td>
</tr>
<tr>
<td>14th June</td>
<td>Lecture 5: Gamma cameras</td>
<td>Lecture 6: SPECT</td>
</tr>
<tr>
<td>16th June</td>
<td>Lecture 7: PET</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22nd June</td>
<td>Tutorial</td>
<td></td>
</tr>
</tbody>
</table>
1. N Barrie Smith & A Webb
 Introduction to Medical Imaging
 Cambridge University Press

2. Edited by M A Flower
 Webb’s Physics of Medical Imaging
 CRC Press

3. A Del Guerra
 Ionizing Radiation Detectors for Medical Imaging
 World Scientific

4. W R Leo
 Techniques for Nuclear and Particle Physics Experiments
 Springer-Verlag
Single Photon Emission Computed Tomography (SPECT)

Ref. 1 – Chapter 3.9

• Basic principle:
 – Source:
 1. Radioisotope usually emitting a single γ-ray per nuclear disintegration → from where ‘Single Photon’
 2. Radiotracer injected in patient → γ-rays are emitted from inside the body → from where ‘Emission’
 – Provides 3D images using CT techniques → from where ‘CT’:
 1. System rotates around patient → detects γ-rays at different angles → 2D projections1
 2. Tomographic reconstruction algorithm applied to 2D projections → 3D images

1Signal at each image point calculated as sum = projection of radioactivity along line through body
SPECT – vs – CT

- SPECT similar to CT

<table>
<thead>
<tr>
<th></th>
<th>SPECT</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>γ-rays</td>
<td>X-rays</td>
</tr>
<tr>
<td>Source location</td>
<td>Internal to body of patient</td>
<td>External to body of patient</td>
</tr>
<tr>
<td></td>
<td>Injected into patient</td>
<td></td>
</tr>
<tr>
<td>Type of imaging</td>
<td>Emission</td>
<td>Transmission</td>
</tr>
</tbody>
</table>
SPECT scanner components

1. Two or three gamma cameras = heads = multi-headed systems → acquire multiple views simultaneously

2. Converging collimator often used inside gamma cameras → increases SNR

3. Moving bed often attached → allows whole body studies
Heads positioning

- Heads can be positioned at different angles and locations and moved inwards and outwards to make distance to organ under study as close as possible:
 - Outwards = to accommodate body
 - Inwards = to make gamma cameras close to the brain

After Piero Posocco (Imperial College)
Data acquisition

• Rotation of gamma cameras around patient → different thickness of body in FOV = different source – detector distance at different positions that affects:
 1. Degree of tissue attenuation
 2. Distribution of γ-rays in body
 3. Spatial resolution: due to diverging-cone shape of line of response defined by collimator

• As a result:
 – Projections at 180° to each other not identical
 – 360° rotation known as conjugate counting needed = combines data acquired from opposing views → reduces attenuation effects and gives more uniform resolution
360° rotation orbits

Circular orbit

Contoured orbit

• Higher spatial resolution
• Needs complex path for detector head

Courtesy Piero Posocco (Imperial College)
Typical acquisition parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of angular views</td>
<td>64÷128</td>
</tr>
<tr>
<td>Linear sampling pitch</td>
<td>2÷3 mm</td>
</tr>
<tr>
<td>Data collection</td>
<td>Over 360°</td>
</tr>
<tr>
<td>Display matrix</td>
<td>64 × 64 or 128 × 128</td>
</tr>
<tr>
<td>FOV</td>
<td>~40÷60 cm trans-axially</td>
</tr>
<tr>
<td>Axial coverage¹</td>
<td>30÷40 cm</td>
</tr>
</tbody>
</table>

¹Achieved by stacking images
Image formation

• Two steps:
 1. Application of corrections to the data in two steps:
 a. Scatter
 b. Depth-dependent attenuation
 2. Image reconstruction
Scatter

• Events acquired in energy window of width that depends on energy resolution of gamma camera → γ-rays scattered at large angles can be still accepted

• Ex.: for a system with energy resolution 20% and detection window = $127\div153$ keV → 140 keV γ-rays from $^{99}Tc^{m}$ scattered up to 50° will fall in the detection window → will be accepted

• Contribution from scattered events:
 – Typically of same order as unscattered events even with collimator
Scatter contribution

- Contribution from scattered γ-rays typically of same order as unscattered γ-rays even with lead collimator
- Number of scattered γ-rays greatest closer to areas of high concentration of radiotracer → position dependent correction
- Scattered γ-rays have lost position information → get assigned to wrong pixel → overestimation of radioactivity in that pixel → image contrast reduced → clinically relevant details may be obscured
Scatter correction methods

• Two methods:
 – Dual-energy window approach = most common method
 – Triple-energy window approach

• Ratio of scattered to unscattered γ-rays may be as high as 40% even when using narrow energy windows
Dual-energy window approach

- Two windows:
 1. Primary photopeak window centred at photopeak
 2. Secondary scatter sub-window set to lower energy range

- Assumptions:
 1. Contributions in windows:
 a. Photopeak window: scattered and unscattered γ-rays
 b. Scatter sub-window: only scattered γ-rays
 2. Constant ratio between signal in photopeak window and signal in scatter window

After Piero Posocco (Imperial College)
Dual-energy window data processing

• Steps:
 1. Projections formed separately from data in photopeak and scatter windows
 2. Scatter projections scaled by scaling factor
 3. Scaled scatter projections subtracted from photopeak projections

• Limitation: multiple scatter more likely in scatter window → spatial distribution of scatter somewhat different in photopeak and scatter windows
Dual-energy window scaling factor

• The scaling factor SF is given by:

$$SF = \frac{W_P}{2W_S}$$

$W_P = \text{width photopeak window}$

$W_S = \text{width scatter window}$

$2 = \text{factor determined experimentally}$

• SF depends on:
 1. Energy resolution of gamma camera \rightarrow choice of detection window
 2. Size of object to be scanned
Triple-energy window approach

• Three windows:

1. Primary photopeak window centred at photopeak and with width narrower than gamma camera detection window → 15% width for a gamma camera with width of detection window 20%

2. Two secondary very narrow scatter sub-windows on both sides of photopeak window of width 3 keV centred on the edge of gamma camera detection window sides

After Piero Posocco (Imperial College)
Triple-energy window data processing

• Steps:
 1. Projections formed separately from data in photopeak and two scatter windows
 2. Scatter projections scaled by width of scatter windows
 3. Scaled scatter projections from two windows added
 4. Resultant scatter projections multiplied by half width of photopeak window
 5. Final scatter projections subtracted from photopeak projections
Attenuation

- γ-rays from radiotracer inside body travel through patient to get to detector \rightarrow attenuation
- Attenuation depends from:
 1. Amount of tissue γ-rays go through \rightarrow γ-rays from deeper in the body / further away from detector more attenuated
 2. E_γ \rightarrow lower energy γ-rays more attenuated
- SPECT measures radiotracer distribution and not attenuation \rightarrow attenuation creates image artefacts \rightarrow correction
- Attenuation = bigger magnitude effect than scatter
Attenuation contribution: an example

• Simulated reconstructed images:
 – Three images from 20 cm diameter cylindrical phantom loaded with three different radiotracers 99Tcm, 131I, 201Tl → γ-rays of different energies
 – One image with no attenuation

• Reconstructed image:
 – Uniform when there is no attenuation
 – Non uniform due to attenuation

After Piero Posocco (Imperial College)
Attenuation correction with conjugate counting

\[D = d_1 + d_2 \]

\[I_1 = I_0 e^{-\mu d_1} \]
\[I_2 = I_0 e^{-\mu d_2} \]

\[I_m = \sqrt{I_1 \cdot I_2} = \sqrt{I_0 e^{-\mu d_1} \cdot I_0 e^{-\mu d_2}} \]
\[= I_0 \sqrt{e^{-\mu(d_1+d_2)}} = I_0 e^{-\mu D/2} \]

\[\mu \] assumed constant throughout patient to determine correction for attenuation = attenuation correction factor \(ACF \)

\[ACF \] is therefore given by:
\[ACF = e^{\mu D/2} \]

Both \(\mu \) and \(D \) need to be measured to determine \(ACF \)

\(I_0 \) = unattenuated signal
\(I_1 = I_0 e^{-\mu d_1} \) = signal along direction 1
\(I_2 = I_0 e^{-\mu d_2} \) = signal along direction 2

\(d_1, d_2 \) = distances source – detector along opposing directions

\(I_0 \) = unattenuated signal

\(I_1 \) = \(I_0 \)\(e^{-\mu d_1} \) = signal along direction 1

\(I_2 \) = \(I_0 \)\(e^{-\mu d_2} \) = signal along direction 2

\(\mu \) = linear attenuation coefficient

\(D \) = \(d_1 + d_2 \)

Courtesy Piero Posocco (Imperial College)
Attenuation correction methods

• Two analytical methods:
 – Chang’s multiplicative method
 – Transmission scan method

• One ‘empirical’ method:
 – Mean shape and attenuation of an average patient used

Taken from Ref. 1 pg. 114
Chang’s multiplicative method

• Steps:
 1. Initial image of radiotracer distribution formed by filtered backprojection without corrections → attenuation ignored
 2. Initial image used to estimate outline contour of patient → distance x that γ-rays have to travel through tissue
 3. Attenuation correction factor ACF calculated for each pixel in reconstructed image as:
 \[ACF = e^{\mu x} \]
 μ = linear attenuation coefficient
 4. Attenuation correction factor is applied to each pixel to generate corrected reconstructed image = each projection is scaled up by the attenuation correction factor
Chang’s multiplicative method limitation

- Assumption used by the method = tissue attenuation coefficient uniform through part of body imaged

- Validity of assumption:
 - Valid for brain and abdomen
 - Not valid for thorax where tissue attenuation is highly spatially dependent

- Method can only be used for brain and abdomen imaging but not for cardiac or thoracic imaging
Transmission scan method

- A transmission scan is acquired simultaneously with a patient scan
- Transmission scan = external ^{153}Gd source emitting ~ 102 keV γ-rays → measures tissue attenuation → equivalent to low-statistics, low-spatial-resolution CT scan
- ^{153}Gd half-life = 242 days → radioactivity constant over several months → does not need replacing frequently
Transmission scan acquisition

• Two scans performed simultaneously:
 1. Patient scan with $^{99}Tc^m$ = emission scan
 2. Transmission scan with external ^{153}Gd source

• $E_{\gamma}^{Gd} \ll E_{\gamma}^{Tc} \rightarrow$ two scans acquired at same time using dual-energy window

• Third window between other two can be used to correct scattered γ-rays leaks from $^{99}Tc^m$ to ^{153}Gd windows

• Separate transmission scan acquired without patient \rightarrow no object in front of gamma camera = reference scan
Transmission scan correction calculation

- Projections λ calculated comparing ^{153}Gd signal intensities with I_{trans} and without I_{ref} the patient:

 $$\lambda = -\ln \frac{I_{\text{trans}}}{I_{\text{ref}}}$$

- Map of attenuation coefficients μ at each position calculated from projections:

 $$I_{\text{trans}} = I_{\text{ref}} e^{-\mu x}$$

- Map of attenuation coefficients used to correct image
Image reconstruction

• SPECT uses CT techniques to reconstruct 2D axial slices from acquired projections and from there 3D distribution of radionuclides → two classes of reconstruction algorithms used:

1. Filtered backprojection techniques = identical to CT

2. Iterative techniques: computer intensive → methods / algorithms developed to speed it up, including using a subset of acquired profiles → most common algorithm = maximum-likelihood expectation-maximum (ML-EM) method
Iterative reconstruction

Image estimate

Calculate update function

Correct the image estimate with update function

Calculated sinogram

Forward projection

Calculate cost function

Comparison with measured sinogram

Less than convergence value?

Yes

Accept image estimate

No

Compare with “threshold”
Common radiotracers for SPECT

<table>
<thead>
<tr>
<th>Radiotracer</th>
<th>E_γ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial perfusion (rest/stress)</td>
<td></td>
</tr>
<tr>
<td>^{201}Tl</td>
<td>68–80</td>
</tr>
<tr>
<td>^{99m}Tc-Sestamibi</td>
<td>140</td>
</tr>
<tr>
<td>^{99m}Tc-Tetrofosmin</td>
<td>140</td>
</tr>
<tr>
<td>Cerebral perfusion</td>
<td></td>
</tr>
<tr>
<td>^{99m}Tc-HMPAO</td>
<td>140</td>
</tr>
<tr>
<td>^{99m}Tc-ECD</td>
<td>140</td>
</tr>
<tr>
<td>Oncology</td>
<td></td>
</tr>
<tr>
<td>^{67}Ga</td>
<td>93, 185, 300</td>
</tr>
<tr>
<td>^{201}Tl</td>
<td>68–80</td>
</tr>
<tr>
<td>^{99m}Tc-Sestamibi</td>
<td>140</td>
</tr>
<tr>
<td>Somastatin receptors: ^{99m}Tc-Depreotide, ^{111}In-Octreotide</td>
<td>140 (^{99m}Tc), 171, 245 (^{111}I)</td>
</tr>
<tr>
<td>Labelled antibodies, peptides</td>
<td></td>
</tr>
</tbody>
</table>
Main clinical applications

• Myocardial perfusion studies = majority of SPECT scans:
 – To detect coronary artery diseases or myocardial infarction
 – Single image = multi-slice data set = typically 100,000 counts
 – Spatial resolution ~14 mm

• Brain studies:
 – To detect areas of reduced blood flow associated with stroke, epilepsy or neurodegenerative diseases / conditions such Alzheimer
 – Single image = multi-slice data set = typically 500,000 counts
 – Spatial resolution ~7 mm ← distance source – detector smaller than in myocardial studies