Joint CI-JAI advanced accelerator lecture series

Imaging and detectors for medical physics

Lecture 4: Radionuclides

Dr Barbara Camanzi

barbara.camanzi@stfc.ac.uk
Course layout

<table>
<thead>
<tr>
<th>Day</th>
<th>AM 09.30 – 11.00</th>
<th>PM 15.30 – 17.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th June</td>
<td>Lecture 1: Introduction to medical imaging</td>
<td>Lecture 2: Detectors for medical imaging</td>
</tr>
<tr>
<td>7th June</td>
<td>Lecture 3: X-ray imaging</td>
<td></td>
</tr>
<tr>
<td>8th June</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13th June</td>
<td>Lecture 4: Radionuclides</td>
<td></td>
</tr>
<tr>
<td>14th June</td>
<td>Lecture 5: Gamma cameras</td>
<td>Lecture 6: SPECT</td>
</tr>
<tr>
<td>16th June</td>
<td>Lecture 7: PET</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22nd June</td>
<td>Tutorial</td>
<td></td>
</tr>
</tbody>
</table>
Books & references

1. N Barrie Smith & A Webb
 Introduction to Medical Imaging
 Cambridge University Press

2. Edited by M A Flower
 Webb’s Physics of Medical Imaging
 CRC Press

3. A Del Guerra
 Ionizing Radiation Detectors for Medical Imaging
 World Scientific

4. W R Leo
 Techniques for Nuclear and Particle Physics Experiments
 Springer-Verlag

Nuclides live charts
- https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
Nuclear medicine imaging

- Imaging of radioactive decay products of a radiopharmaceutical (radiotracer) introduced into the body → emission imaging (as opposed to X-ray imaging = transmission imaging)

- Spatial distribution depends on how radiopharmaceutical interacts with tissues in the body

- Administration of radiopharmaceutical:
 1. Intravenous injection into bloodstream
 2. Inhalation into lungs
 3. Subcutaneous administration
 4. Oral administration
Nuclear medicine imaging techniques

- SPECT = Single Photon Emission CT = Single Photon Emission Computed Tomography
- PET = Positron Emission Tomography
- Planar scintigraphy
Nuclide notation

Nucleus

• Formed of nucleons

- Nucleons:
 - proton = particle with positive charge
 - neutron = particle with zero charge

Notation

Element X

\[\begin{align*}
A &= \text{mass number} = \text{number of protons} + \text{neutrons} \\
Z &= \text{atomic number} = \text{number of protons}
\end{align*} \]

Isotopes of an element = nuclides with same number of protons (same \(Z \)) but different number of neutrons (different \(A \))
Forces within the nucleus

- In stable nuclei forces are well balanced
- In unstable nuclei there are too many neutrons or protons → forces are not balanced → nucleus is prone to undergo nuclear rearrangement and decay
- Line of stability
 - For low Z: $N \approx Z$
 - For high Z: $N \approx 1.5 \times Z$
 - No stable nuclei for $Z > 82$ (Lead)
Radioactivity

- Intrinsic property of unstable nuclei that have too many neutrons or protons \rightarrow unstable nuclei emit particles or γ-rays to become more stable

- Definitions:
 1. Radionuclide = nuclide that is unstable and undergoes radioactive decay
 2. Radioisotope = radioactive isotope
 3. Radioactive disintegration or decay = spontaneous change in nucleus composition with associated emission of energy to reach a more stable state
 4. Radiotracer = radiopharmaceutical
Radioactive decay law

- Number of radioactive atoms in a sample decreases with time:
 \[
 \frac{dN}{dt} = -\lambda t
 \]

- \(N(t) \) = number of atoms left at given time \(t \) decreases exponentially:
 \[
 N(t) = N_0 \exp(-\lambda t)
 \]

 \(N_0 \) = number of atoms at \(t = 0 \)

 \(\lambda [s^{-1}] = \) decay constant

 \(\exp(-\lambda t) = \) decay factor
Decay constant

- Probability that any individual radioactive atom will undergo decay per unit time
- Statistical definition → average rate of decay
- Exercise:
 Q: If $\lambda = 0.01 \text{ s}^{-1}$ on average how many atoms undergo radioactive decay per unit time?
(Radio)activity Q

Ref. 1 – Chapter 3.2 and Ref. 2 – Chapter 5.4.1

• (Radio)activity $Q = $ number of disintegrations per s = rate of change of number N of radioactive nuclei

$$Q = - \frac{dN}{dt} = \lambda N$$

• Units for Q:

1. SI unit = Bequerel (Bq)
 1 Bq = 1 disintegration per second

2. Curies (Ci) = named after Pierre Curie and defined as number of disintegrations per second from 1 gramme of ^{226}Ra
 1 Ci = 3.7×10^{10} disintegrations per second = 3.7×10^{10} Bq
(Radio)activity Q decay law

- (Radio)activity Q decreases with time too
- Exercise:
 Q: Determine the (radio)activity Q decay law
Half-life

- Half-life $\tau_{1/2}$ = time required for Q to drop to half (50%) of its initial value $\rightarrow \tau_{1/2}$ is independent of N
- Exercise: Calculate relation between $\tau_{1/2}$ and λ and express Q as function of $\tau_{1/2}$
Atomic half-lives

\[Z = N \]

Half-life (seconds)

- \(> 1e+15 \)
- \(1e+10 \) 1e-01
- \(1e+07 \) 1e-02
- \(1e+05 \) 1e-03
- \(1e+04 \) 1e-04
- \(1e+03 \) 1e-05
- \(1e+02 \) 1e-06
- \(1e+01 \) 1e-07
- \(1e+00 \) 1e-15
- unknown

Courtesy Piero Posocco (Imperial College)
Biological and effective half-life

• In many cases excretion of radiotracer from tissue follows an exponential decay law → biological half-life $\tau_{1/2,\text{bio}}$ used to characterise the decay → $\tau_{1/2,\text{bio}}$ gives a measure of how long radiotracer remains in the body

• Effective half-life $\tau_{1/2,\text{eff}}$ given by:

$$\tau_{1/2,\text{eff}} = \frac{\tau_{1/2} \cdot \tau_{1/2,\text{bio}}}{\tau_{1/2} + \tau_{1/2,\text{bio}}}$$

→ $\tau_{1/2,\text{eff}}$ always less than the shorter between $\tau_{1/2}$ and $\tau_{1/2,\text{bio}}$
Exercise

• Q: Two patients undergo nuclear medicine scans. One receives a dose of radiotracer A with $\tau_{1/2} = 6$ h and the other a dose of radiotracer B with $\tau_{1/2} = 24$ h. If dose of radiotracer A is $3 \times$ dose of radiotracer B and $\tau_{1/2,\text{bio}}$ of A is 6 h and of B 12 h, at what time the radioactivity in the body of the two patients is the same?
Radioactive decay modes

Ref. 2 – Chapter 5.4.3

• α^{+2} decay
• β^- decay
• β^+ decay
• Electron Capture (EC)
• Isomeric transitions
 – Radiative α^{+2}, β^- and β^+ decays
 – Radiative EC
• Internal conversion (IC)
α^+2 decay

- High A radionuclide emits α-particle = helium nucleus = +2 charge
- Most energy distributed between:
 1. Daughter nucleus = recoil energy
 2. α-particle = kinetic energy = $4\div8$ MeV → travels few μm in tissue
- If nucleus left in excited state → de-excitation is through emission of γ-rays
- Not use in medical imaging (shallow penetration in tissue) but as sealed X- or γ-rays sources in therapy
\(\beta^- \) decay

- Neutron-rich radionuclide ejects \(\beta^- \) particle = \(e^- = -1 \) charge in the process:
 \[
 n \rightarrow p + e^- + \bar{\nu}
 \]
- Three-body decay \(\rightarrow \) energy spectrum of \(e^- \) = continuum up to a maximum
- \(Z \rightarrow Z + 1, \ A \) and atomic weight remain the same
- \(e^- \) penetration in tissue < 2 mm \(\rightarrow \) not used in medical imaging

Example

\[
\frac{^{14}_6 C}{\beta^- \text{decay}} \rightarrow ^{14}_7 N + \beta^- + \bar{\nu} + E
\]

\(E \) = shared randomly between \(\bar{\nu} \) and kinetic energy of \(\beta^- \)
Radiative β^- decay (β^-, γ)

- If following β^- decay daughter nuclide is produced in excited state $X^* \rightarrow$ prompt de-excitation to more stable state through emission of γ rays
- $Z \rightarrow Z + 1$, A and atomic weight remain the same
- Typical energy of γ rays = 50÷500 keV → useful for imaging
- Disadvantage: patient still exposed to β^- particle → dose

Example

$$^{133}_{54}Xe \rightarrow ^{133}_{55}Cs^* \rightarrow ^{133}_{55}Cs$$

[Diagram showing the decay processes and energy levels]
Proton-rich or neutron deficient radionuclide ejects β^+-particle = $e^+ = +1$ charge in the process:
$$p \rightarrow n + e^+ + \nu$$

- Three-body decay → energy spectrum of e^+ = continuum up to a maximum
- $Z \rightarrow Z - 1, \ A$ and atomic weight remain the same
- e^+ travels ~ 1 mm in tissue → comes to rest → combines with atomic e^- → 2 back-to-back 511 keV γ-rays
- If daughter nuclide is produced in excited state → de-excitation is through emission of γ-rays

Example

$^{15}_6O \beta^+ \text{decay} \rightarrow ^{15}_7N + \beta^+ + \nu + E$

$E = \text{shared randomly between } \nu \text{ and kinetic energy of } \beta^+$

Average kinetic energy $\langle E_{\beta^+} \rangle \approx \frac{E_{\beta^+}^{\text{max}}}{3}$

1.022 MeV

$E_{\beta^+}^{\text{max}} = 1.7 \text{ MeV}$
Electron Capture (EC) and radiative Electron Capture (EC, γ)

- In proton-rich radionuclide inner orbital (K-shell) $e^- = closer to nucleus, captured within nucleus:
 \[p + e^- \rightarrow n + \nu + E \]
- $Z \rightarrow Z - 1$
- e^- from outer orbital fills vacancy \(\rightarrow \) emission of X-ray characteristic of daughter nuclide = can be useful for imaging if high enough E
- The higher Z the closer to the nucleus are the e^- shells \(\rightarrow \) probability of EC increases with Z
- If daughter nuclide is produced in excited state $X^* \rightarrow$ de-excitation is through emission of γ-rays

Example

\[\frac{^{125}_{53}I}{e^-} \rightarrow \frac{^{125}_{52}Te^*}{+ \nu + E} \rightarrow \frac{^{125}_{52}Te}{0.035 \text{ MeV}} \]
Feynman diagrams for β^-, β^+ decays and EC

\begin{align*}
A_X & \xrightarrow{\beta^-} z_{+1}A_Y + e^- + \bar{\nu}_e \\
A_X & \xrightarrow{\beta^+} z_{-1}A_Y + e^+ + \nu_e \\
A_X & \xrightarrow{EC} z_{-1}A_Y + \nu_e
\end{align*}

Courtesy Piero Posocco (Imperial College)
β emitters

(β^-, γ) emitters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>$\langle E_\beta \rangle$ (MeV)</th>
<th>E_γ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{60}Co</td>
<td>5.27 yrs</td>
<td>0.096</td>
<td>1173, 1332</td>
</tr>
<tr>
<td>^{131}I</td>
<td>8.04 days</td>
<td>0.192</td>
<td>364</td>
</tr>
<tr>
<td>^{133}Xe</td>
<td>5.24 days</td>
<td>0.101</td>
<td>81</td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>30.00 yrs</td>
<td>0.173</td>
<td>662</td>
</tr>
</tbody>
</table>

β^+ emitters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life (min)</th>
<th>$E_{\beta^+}^{\text{max}}$ (MeV)</th>
<th>$\langle \beta^+ \text{ range} \rangle$ in water (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{11}C</td>
<td>20.30</td>
<td>0.961</td>
<td>0.103</td>
</tr>
<tr>
<td>^{13}N</td>
<td>10.00</td>
<td>1.190</td>
<td>0.132</td>
</tr>
<tr>
<td>^{15}O</td>
<td>2.07</td>
<td>1.720</td>
<td>0.201</td>
</tr>
<tr>
<td>^{18}F</td>
<td>110.00</td>
<td>0.635</td>
<td>0.064</td>
</tr>
</tbody>
</table>

¹Only dominant β^- and γ emissions shown
EC radionuclides

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>E_{X-ray} (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{125}I</td>
<td>60.1 days</td>
<td>~30</td>
</tr>
<tr>
<td>^{201}Tl</td>
<td>3.04 days</td>
<td>~70</td>
</tr>
</tbody>
</table>

(EC, γ) radionuclides

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>E_{γ} (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{57}Co</td>
<td>270 days</td>
<td>122, 136</td>
</tr>
<tr>
<td>^{67}Ga</td>
<td>78.3 h</td>
<td>93, 185</td>
</tr>
<tr>
<td>^{111}In</td>
<td>2.83 days</td>
<td>171, 245</td>
</tr>
<tr>
<td>^{123}I</td>
<td>13.2 h</td>
<td>159</td>
</tr>
</tbody>
</table>
Isomeric transitions (IT) and metastable states

- Excited state in which daughter nuclide can be produced called isomeric state
- Sometimes radiative decays from isomeric state to ground state are called isomeric transition
- Isomeric transitions can take from fractions of seconds (short-lived states) to many years (long-lived states)
- Long-lived isomeric states are called metastable states $\frac{A}{Z}X^m$

Example

- $^{99}Tc^m$ most common example of metastable isotope used in nuclear medicine
- Decay chain:
 $$^{99}Mo \xrightarrow{\beta^-} ^{99}Tc^m \xrightarrow{\gamma} ^{99}Tc$$
 - Half-life for β^- decay = 66 h
 - Half-life for isomeric transition = 6 h
Internal Conversion (IC)

- γ-ray emitted in isomeric transition interacts with atomic $e^{-} \rightarrow e^{-}$ is ejected = conversion electron
- Interaction is usually with K-shell e^{-} as they are closest to nucleus
- Conversion e^{-} has kinetic energy E:
 \[E = E_{\gamma} - E_{\text{binding}} \]
- e^{-} from outer shell fills vacancy \rightarrow characteristic X-ray emitted
- X-ray emitted can interact with other outer shell e^{-} \rightarrow e^{-} get ejected if $E_{X\text{-ray}} > E_{\text{binding}}$ = Auger e^{-}
Radioactive decay table

Z (protons) vs N (neutrons) diagram showing different decay modes:
- Stable
- EC, β^+
- β^-
- α
- P
- N
- Unknown

Courtesy Piero Posocco (Imperial College)
Production of radionuclides

Ref. 2 – Chapter 5.4.2

• Man-made production:
 1. Neutron capture = neutron activation
 2. Nuclear fission
 3. Charged-particle bombardment
 4. Radioactive decay

• Naturally-occurring radionuclides
Man-made production technologies

• Nuclear reactors:
 1. Neutron capture = nuclear absorption
 2. Nuclear fission

• Accelerators:
 1. Charged-particle bombardment

• Radionuclide generators:
 1. Radioactive decay
Neutron capture / nuclear absorption

• Radionuclides produced when neutron absorbed by atomic nucleus
 \[\text{neutron} + \text{nucleus} \rightarrow \text{radionuclide}\]

• For neutron to be captured \(E_n\) needs to be low in the range \(0.03\div100\) eV = thermal neutrons

• Radionuclides produced predominantly neutron rich → decay mainly by \(\beta^-\)

• Production system:
 1. Nuclear reactor: creates thermal neutrons
 2. Target: placed inside field of thermal neutrons
Neutron capture reaction chain

• Neutron capture leaves nucleus excited → de-excitation via emission of γ-ray:

$$n + ^A X \rightarrow ^{A+1} X + \gamma$$

Notation: $^AX(n, \gamma)^{A+1}X$

• Radionuclide produced = isotope of target material = same Z but $A + 1$ → very difficult to separate → low purity and activity

• Exception that can be easily separated: ^{125}I from decay of ^{125}Xe with half-life 17 h:

$$^{124}Xe(n, \gamma)^{125}Xe \overset{EC \text{ or } \beta^+}{\rightarrow} ^{125}I$$
Nuclear fission

- Nuclear fission process:
 1. Heavy nuclei \({}_{232}^{\text{Th}}, {}_{235}^{\text{U}}, {}_{237}^{\text{U}}, {}_{239}^{\text{Pu}} \) and others with \(A > 92 \) are irradiated with thermal neutrons = neutron bombardment → absorb neutrons → become unstable
 2. Unstable nuclei undergo fission = break up into two lighter nuclei of approximately similar atomic weight

- Fission-produced nuclides have \(28 < A < 65 \)

- Radionuclides produced predominantly neutron rich → decay mainly by \(\beta^- \)

- Fission products can be separated chemically with high specificity → high quality radiopharmaceuticals
Nuclear reactor

Main components:
1. Fuel cells: contain fissionable material
2. Moderator: commonly graphite or D_2O surrounding fuel cells = slows down neutrons
3. Control rods: commonly boron exposing or shielding fuel cells = heavy neutron absorbers
4. Ports in reactor core: allow samples to be inserted for irradiation with neutrons

Position of fuel cells and control rods determine rate of chain reaction

Fission of ^{235}U or heavily enriched ^{235}U giving:
1. Fission products
2. Thermal neutrons \rightarrow can be used to create radionuclide by neutron capture

Courtesy Piero Posocco (Imperial College)
Reactor-produced radionuclides

Nuclear absorption

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Production reaction</th>
<th>E_γ (keV)</th>
<th>Half-life</th>
<th>σ (Barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{51}Cr</td>
<td>$^{50}\text{Cr}(n,\gamma)^{51}\text{Cr}$</td>
<td>320</td>
<td>27.7 days</td>
<td>15.8</td>
</tr>
<tr>
<td>^{59}Fe</td>
<td>$^{58}\text{Fe}(n,\gamma)^{59}\text{Fe}$</td>
<td>1099</td>
<td>44.5 days</td>
<td>1.28</td>
</tr>
<tr>
<td>^{99}Mo</td>
<td>$^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$</td>
<td>740</td>
<td>66.02 h</td>
<td>0.13</td>
</tr>
<tr>
<td>^{131}I</td>
<td>$^{130}\text{Te}(n,\gamma)^{131}\text{Te} \rightarrow ^{131}\text{I}$</td>
<td>364</td>
<td>8.04 days</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Nuclear fission

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>E_γ (keV)</th>
<th>Half-life</th>
<th>Fission yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{99}Mo</td>
<td>740</td>
<td>66.02 h</td>
<td>6.1</td>
</tr>
<tr>
<td>^{131}I</td>
<td>364</td>
<td>8.05 days</td>
<td>2.9</td>
</tr>
<tr>
<td>^{133}Xe</td>
<td>81</td>
<td>5.27 days</td>
<td>6.5</td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>662</td>
<td>30 yrs</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Charged-particle bombardment

- Radionuclides produced through interaction of charged particles \((H^\pm, D^+, 3He^{2+}, 4He^{2+})\) with nuclei of stable atoms

 \[\text{charged particle} + \text{nucleus} \rightarrow \text{radionuclide}\]

- Radionuclides produced predominantly neutron deficient \(\rightarrow\) decay by \(\beta^+\) or EC

- Production system:
 1. Accelerator: kinetic \(E_{\text{charged particle}}\) needs to be high enough to overcome nucleus (+) electrostatic repulsion
 2. Target
Accelerators

- Two basic types used for medical imaging:
 1. Cyclotron → most commonly used and usually located near hospitals due to radionuclide short half-lives
 2. Linear accelerator

Cyclotron frequency: \[f = \frac{qB}{2\pi m} \]
Path of +ve ion in cyclotron

+ve ion source

Magnetic field into page

$E_x(x)$

AC volts

Dees = vacuum chambers

Courtesy Piero Posocco (Imperial College)
Path of +ve ion in cyclotron

- +ve ion source
- Magnetic field into page
- Dees = vacuum chambers
- AC volts
- Ex(x)

Courtesy Piero Posocco (Imperial College)
Path of +ve ion in cyclotron

Magnetic field into page

+ve

E_x(x)

AC volts

-ve

Dees = vacuum chambers

Courtesy Piero Posocco (Imperial College)
Compact biomedical cyclotron

Power supplies and Target support unit

Retractable shields

Courtesy Piero Posocco (Imperial College)
Accelerator-produced radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Principal γ-ray E_γ (keV)1</th>
<th>Half-life</th>
<th>Production reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{11}C</td>
<td>511</td>
<td>20.4 min</td>
<td>$^{14}N(p, \alpha)^{11}C$</td>
</tr>
<tr>
<td>^{13}N</td>
<td>511</td>
<td>9.96 min</td>
<td>$^{13}C(p, n)^{13}N$</td>
</tr>
<tr>
<td>^{15}O</td>
<td>511</td>
<td>2.07 min</td>
<td>$^{15}N(p, n)^{15}O$</td>
</tr>
<tr>
<td>^{18}F</td>
<td>511</td>
<td>109.7 min</td>
<td>$^{18}O(p, n)^{18}F$</td>
</tr>
<tr>
<td>^{67}Ga</td>
<td>93, 184, 300</td>
<td>78.3 h</td>
<td>$^{68}Zn(p, 2n)^{67}Ga$</td>
</tr>
<tr>
<td>^{111}In</td>
<td>171, 245</td>
<td>67.9 h</td>
<td>$^{112}Cd(p, 2n)^{111}In$</td>
</tr>
<tr>
<td>^{120}I</td>
<td>511</td>
<td>81 min</td>
<td>$^{127}I(p, 8n)^{120}Xe \rightarrow ^{120}I$</td>
</tr>
<tr>
<td>^{123}I</td>
<td>159</td>
<td>13.2 h</td>
<td>$^{112}Te(p, 2n)^{123}I$ $^{127}I(p, 5n)^{123}Xe \rightarrow ^{123}I$</td>
</tr>
<tr>
<td>^{124}I</td>
<td>511</td>
<td>4.2 days</td>
<td>$^{124}Te(p, n)^{124}I$</td>
</tr>
<tr>
<td>^{201}Tl</td>
<td>68÷80.3</td>
<td>73 h</td>
<td>$^{203}Tl(p, 3n)^{201}Pb \rightarrow ^{201}Tl$</td>
</tr>
</tbody>
</table>

1511 keV γ-rays come from β^+ decay
Radioactive decay

- Radioactive decay of parent radionuclide can lead to:
 1. Unstable nuclide = radioactive nuclide = daughter radionuclide
 2. Stable nuclide

- \(Z \) of radionuclide daughter depends on decay type

- Good radionuclides for medical imaging:
 1. Daughter is short-lived and has \(Z \) different from parent → can be easily separated
 2. Parent has sufficiently long half-life for production, processing and shipment
Radionuclide generator

• The generator:
 1. Receives in input radionuclides produced from nuclear reactors or accelerators
 2. Contains:
 a) Chemical separation system of daughter radionuclide from parent radionuclide: chromatographic techniques most common
 b) Extraction system

• Main features:
 1. Portable → provides local supply of short-lived radionuclides without a nearby accelerator or nuclear reactor
 2. Daughter product replenished continuously by decay of parent → can be extracted repeatedly
Generator-produced radionuclides

<table>
<thead>
<tr>
<th>Parent P</th>
<th>Parent half-life</th>
<th>Mode of decay P → D</th>
<th>Daughter D</th>
<th>Daughter decay mode</th>
<th>Daughter half-life</th>
<th>Daughter γ Eγ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁶²Zn</td>
<td>9.1 h</td>
<td>β⁺ EC</td>
<td>⁶²Cu</td>
<td>β⁺ EC</td>
<td>9.8 min</td>
<td>511 1173</td>
</tr>
<tr>
<td>⁶⁸Ge</td>
<td>280 days</td>
<td>EC</td>
<td>⁶⁸Ga</td>
<td>β⁺ EC</td>
<td>68 min</td>
<td>511 1080</td>
</tr>
<tr>
<td>⁸¹Rb</td>
<td>4.7 h</td>
<td>EC</td>
<td>⁸¹Kr</td>
<td>IT</td>
<td>13 s</td>
<td>190</td>
</tr>
<tr>
<td>⁸²Sr</td>
<td>25 days</td>
<td>EC</td>
<td>⁸²Rb</td>
<td>EC β⁺</td>
<td>76 s</td>
<td>777 511</td>
</tr>
<tr>
<td>⁹⁹Mo</td>
<td>66.02 h</td>
<td>β⁻</td>
<td>⁹⁹Tcᵐ</td>
<td>IT</td>
<td>6.02 h</td>
<td>140</td>
</tr>
<tr>
<td>¹¹³Sn</td>
<td>115.1 days</td>
<td>EC</td>
<td>¹¹³Inᵐ</td>
<td>IT</td>
<td>1.66 h</td>
<td>392</td>
</tr>
<tr>
<td>¹⁹⁵Hgᵐ</td>
<td>40 h</td>
<td>IT EC</td>
<td>¹⁹⁵Auᵐ</td>
<td>IT</td>
<td>30.6 s</td>
<td>262</td>
</tr>
</tbody>
</table>
\[{^{99}Mo} - {^{99}Tc}^{m} \text{ generator} \]

Ref. 1 – Chapters 3.4 and 3.5

- \(^{99}Tc^{m}\) most common radioisotope used in nuclear medicine:
 \[{^{99}Mo} \quad \text{Half-life=66 h} \quad \xrightarrow{} \quad {^{99}Tc}^{m} \quad \text{Half-life=6.02 h} \quad \rightarrow \quad {^{99}Tc} + 140 \text{ keV } \gamma \]

- Also called a Molly or Cow
- Typically used for one week
- \(^{99}Mo\) bound to alumina column as molybdate ion \((\text{NH}_4)_2\text{MoO}_4^{-}\)
- \(^{99}Tc^{m}\) :
 - Chemically different → not bound to column → eluted from column with 5±25 ml saline
 - 75±85% of available \(^{99}Tc^{m}\) extracted
Equation for number of $^{99}Tc^m$ atoms produced with generator

$^{99}Mo \xrightarrow{\lambda_1} ^{99}Tc^m \xrightarrow{\lambda_2} ^{99}Tc$

$\left(N_1 \right) \quad \left(N_2 \right) \quad \left(N_3 \right)$

- Number N_1 of ^{99}Mo atoms decreases with time from N_0 due to decay:
 \[N_1 = N_0 e^{-\lambda_1 t} \]

- Number N_3 of ^{99}Tc atoms increases with time due to decay of $^{99}Tc^m$

- Number N_2 of $^{99}Tc^m$ atoms has two components = one decreases with time due to $^{99}Tc^m$ own decay, other increases with time due to ^{99}Mo decay → first order differential equation for N_2:
 \[\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2 \rightarrow \frac{dN_2}{dt} + \lambda_2 N_2 = \lambda_1 N_1 \]

With boundary condition: $N_2 = 0$ at $t = 0$
Solution of first order differential equation for N_2

• Solution of first order differential equation for N_2 made of two terms:

$$N_2 = Ce^{-\lambda_2 t} + De^{-\lambda_1 t}$$

1. Homogeneous: $N_2 = Ce^{-\lambda_2 t}$
2. Particular: $N_2 = De^{-\lambda_1 t}$

• From boundary condition $\rightarrow C = -\frac{\lambda_1 N_0}{\lambda_2 - \lambda_1}$

• Solving particular solution for $D \rightarrow D = \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1}$

• Final solution of first order differential equation for N_2:

$$N_2 = -\frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} e^{-\lambda_2 t} + \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} e^{-\lambda_1 t}$$

$$N_2 = \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t})$$
Radioactivity Q of $^{99}Tc^m$ produced with the generator

- Radioactivity Q of $^{99}Tc^m$ produced with the generator given by:
 \[Q = \lambda_2 N_2 \]

- Using solution for N_2 the radioactivity Q is finally given by:
 \[Q = \lambda_2 \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) = \frac{\lambda_1 \lambda_2 N_0}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) \]

 N_0 = number of ^{99}Mo at $t = 0$

 λ_1 = ^{99}Mo decay constant = $\frac{\ln 2}{\tau_{1/2}^1} = \frac{\ln 2}{66} = 0.0105 \text{ h}^{-1}$

 λ_2 = $^{99}Tc^m$ decay constant = $\frac{\ln 2}{\tau_{1/2}^2} = \frac{\ln 2}{6} = 0.116 \text{ h}^{-1}$

- Radioactivity proportional to difference of two exponentials = one governing increase in $^{99}Tc^m$ due to ^{99}Mo decay and other decrease in $^{99}Tc^m$ due to its decay
Naturally-occurring radionuclides

- Very long-lived elements
- Mainly very heavy elements

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Abundance (%)</th>
<th>Half-life (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{40}K</td>
<td>0.01</td>
<td>1.26×10^9</td>
</tr>
<tr>
<td>^{87}Rb</td>
<td>27.8</td>
<td>4.88×10^{10}</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>100</td>
<td>1.40×10^{10}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>0.7</td>
<td>7.04×10^8</td>
</tr>
<tr>
<td>^{238}U</td>
<td>99.3</td>
<td>4.46×10^9</td>
</tr>
</tbody>
</table>

- → Not useful for imaging
Choice of radionuclides for imaging

Ref. 2 – Chapter 3.4.4

• Desirable physical characteristics of radionuclides for nuclear medicine imaging:

1. Physical half-life:
 a. Long enough to allow:
 1) Preparation of radiopharmaceuticals
 2) Completion of imaging procedures
 b. Short enough to ensure dose to patient and staff is minimised

2. Decay via isomeric transition = produces γ rays with:
 a. High photon yield \rightarrow good counting statistics
 b. Suitable E_γ

3. Absence of particulate emission (α or β particles) \rightarrow no unnecessary dose to patients
Emitted photon energy

• Emitted photon energy critical and chosen as “compromise” for various reasons:

1. High enough E_γ so that:
 a. Photon is able to efficiently escape the body
 b. Photopeak is easily separated from scattered radiation

2. Low enough E_γ so that:
 a. Detection efficiency is still good
 b. Do not penetrate thin collimator septa → thickness of collimator septa not too big
 c. Photons are not too difficult to shield and to handle
Commonly used radionuclides for imaging

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Decay mode</th>
<th>Product</th>
<th>E (keV)</th>
<th>Half-life</th>
<th>Imaging system</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{11}C</td>
<td>β^+</td>
<td>γ</td>
<td>511</td>
<td>20 min</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>^{13}N</td>
<td>β^+</td>
<td>γ</td>
<td>511</td>
<td>10 min</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>^{15}O</td>
<td>β^+</td>
<td>γ</td>
<td>511</td>
<td>2 min</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>^{18}F</td>
<td>β^+</td>
<td>γ</td>
<td>511</td>
<td>110 min</td>
<td>PET</td>
<td>~80% of all PET imaging (FDG)</td>
</tr>
<tr>
<td>^{67}Ga</td>
<td>EC</td>
<td>γ</td>
<td>93, 185, 300</td>
<td>3.3 days</td>
<td>γ-camera, SPECT</td>
<td></td>
</tr>
<tr>
<td>^{82}Rb</td>
<td>β^+</td>
<td>γ</td>
<td>511</td>
<td>1.25 min</td>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>$^{99}Tc^m$</td>
<td>IT</td>
<td>γ</td>
<td>140</td>
<td>6.0 h</td>
<td>γ-camera, SPECT</td>
<td>> 80% of all nuclear medicine imaging</td>
</tr>
<tr>
<td>^{111}In</td>
<td>EC</td>
<td>γ</td>
<td>172, 247</td>
<td>2.8 days</td>
<td>γ-camera, SPECT</td>
<td>Used for longer term studies</td>
</tr>
<tr>
<td>^{123}I</td>
<td>EC</td>
<td>γ</td>
<td>159</td>
<td>13 h</td>
<td>γ-camera, SPECT</td>
<td></td>
</tr>
<tr>
<td>^{201}Tl</td>
<td>EC</td>
<td>X-ray</td>
<td>68÷80</td>
<td>3.0 days</td>
<td>γ-camera, SPECT</td>
<td></td>
</tr>
</tbody>
</table>
Radiopharmaceuticals

Ref. 2 – Chapter 5.4.5

• Radiopharmaceutical = radioactive compound (biomolecule or drug) of suitable quality to be safely administered to humans for diagnosis, therapy or research

• Radiopharmaceutical composition:
 1. Usually radionuclide + pharmaceutical compound
 2. Some exceptions:
 a. No associated pharmaceutical compound, for ex. ^{133}Xe gas
 b. Pharmaceutical component = counter ion, for ex. NaI

Courtesy Piero Posocco (Imperial College)
Radiopharmaceutical chemistry and biology

Ref. 2 – Chapters 5.4.5, 5.4.6 5.4.7 and 5.4.8

• Radiolabelling = “attach” the radionuclide to the pharmacological compound

• Distribution of radiopharmaceutical within living system depends on various factors including:
 1. 3D structure and size of the molecule
 2. Blood flow

• Quality control:
 1. Biological purity: toxicity, sterility and apyrogenicity
 2. Radiopharmaceutical purity: radionuclide, radiochemical and chemical purity
Choice of radiopharmaceuticals for imaging

- Characteristics of radiopharmaceuticals for nuclear medicine imaging:
 1. Accumulation / rate of uptake or clearance of radiopharmaceutical should be related to a physiologic, biochemical or molecular process, target or function
 2. No pharmacological or toxicological effects on system / organ under study → concentration usually subpharmacological (micromolar to nanomolar)
 3. High uptake in target tissue compared with non-target tissue = specificity → lower required dose + increase image contrast
 4. Half-life appropriate for the duration of the study
 5. Easily synthesised or labelled
 6. Sufficiently long shelf life before and after radiolabelling
 7. Be of required pharmaceutical quality
Some common radiopharmaceuticals

<table>
<thead>
<tr>
<th>Compound</th>
<th>Nuclide</th>
<th>Measurement</th>
<th>Example of clinical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>^{13}N</td>
<td>Myocardial perfusion</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>Fluorodeoxyglucose (FDG)</td>
<td>^{18}F</td>
<td>Glucose metabolism</td>
<td>Cancer, neurological disorders and myocardial diseases</td>
</tr>
<tr>
<td>Gallium citrate</td>
<td>^{67}Ga</td>
<td>Sequestered in tumours</td>
<td>Tumour localization</td>
</tr>
<tr>
<td>$^{99}Tc^{m}$-methylene diphosphonate (MDP)</td>
<td>$^{99}Tc^{m}$</td>
<td>Bone metabolism</td>
<td>Metastatic spread of cancer</td>
</tr>
<tr>
<td>Sestamibi, Tetrofosmin</td>
<td>$^{99}Tc^{m}$</td>
<td>Myocardial perfusion</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>MAG3, DTPA</td>
<td>$^{99}Tc^{m}$</td>
<td>Renal function</td>
<td>Kidney disease</td>
</tr>
<tr>
<td>HMPAO, EDC</td>
<td>$^{99}Tc^{m}$</td>
<td>Cerebral blood flow</td>
<td>Neurologic disorders</td>
</tr>
<tr>
<td>Labelled white blood cells</td>
<td>^{111}In</td>
<td>Sites of infection</td>
<td>Detecting inflammation</td>
</tr>
<tr>
<td>Sodium Iodide</td>
<td>^{131}I</td>
<td>Thyroid function</td>
<td>Thyroid disease</td>
</tr>
</tbody>
</table>