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Advanced single–slice rebinning in cone–beam spiral CT:

Theoretical considerations and medical applications
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ABSTRACT

The advanced single–slice rebinning algorithm (ASSR) is a highly accurate and efficient approximative algorithm
for cone–beam spiral CT that a) yields high image quality even at large cone angles, b) makes use of available
2D backprojection algorithms/hardware and c) allows for sequential data processing. It uses virtual R–planes (re-
construction planes) that are tilted to optimally fit 180◦ spiral segments. Along these R–planes data of a virtual
2D parallel scanner are synthesized via rebinning from the measured spiral cone–beam data. Reconstruction with
2D filtered backprojection yields the object cross-section in world coordinates (x, y, z(x, y)) which is resampled to
Cartesian coordinates (x, y, z) by z–filtering. Geometrical misalignments as well as any arbitrary detector geometry
can be easily incorporated in the ASSR algorithm.

ASSR, unlike other approximate algorithms, does not show severe cone–beam artifacts when going to larger cone
angles. Even for scanners with a high number of detector rows, e.g. 64 rows, a high and isotropic z–resolution is
achieved. In–plane resolution is determined by the 2D reconstruction filters which can be chosen as in 2D CT. Even
in the case of only M = 4 or M = 8 simultaneously measured slices, ASSR may outperform standard z–interpolation
algorithms such as 180◦MFI. Due to its high efficiency and high image quality ASSR has the potential to be used
for medical cone–beam CT.

Keywords: Computed tomography (CT), Multi–slice Spiral CT, Multi–row detector systems, Cone–beam detector
systems, 3D reconstruction

1. INTRODUCTION

Future developments in medical CT are aiming at increasing spatial resolution and at improving the volume scanning
capability of the CT scanners.1 The latest step towards this goal was the introduction of multi–slice CT scanners in
1998. The number of simultaneously acquired slices nowadays is typically M = 4. However, there is a strong desire
to further improve the volume coverage speed and/or the z–resolution of the scanners. This can be achieved only by
increasing the number of detector rows. Increasing the number of detector rows, however, will lead to the problem
of cone–beam reconstruction since the acquired data cannot be considered as being approximately perpendicular to
the z–axis anymore.

Quite a few cone–beam reconstruction algorithms have been proposed in the past. They can be divided into exact
cone–beam algorithms2–5 and approximate cone–beam algorithms.6–10 However, all of them suffer from certain
drawbacks which will not allow their usage for medical CT. For example the exact algorithms are computationally
too demanding and consequently the reconstruction time is too high to be used in a medical environment. Moreover,
data truncation, solved by data combination, and the long object problem, theoretically solvable as well, introduce
new artifacts due to the inherent discrete nature of the measured data. The approximate approaches, in contrast,
are computationally very efficient. However, with increasing cone angle the artifact content is increased drastically
and, even for a low number M of simultaneously measured slices (e.g. M = 16, assuming the typical geometry of a
medical CT scanner), the artifact level of the known approximate algorithms becomes unacceptable for medical use.
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Marc Kachelrieß: marc.kachelriess@imp.uni-erlangen.de
Stefan Schaller: stefan.schaller@med.siemens.de
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Stimulated by the single–slice rebinning algorithm11 (SSR) we consider a new approach here: the advanced single–
slice rebinning ASSR. The difference to the original single–slice rebinning is that ASSR uses tilted reconstruction
planes that are optimized to fit the spiral trajectory within an angular range of 2πf with 1

2 ≤ f ≤ 1.

ASSR has been derived in its full length in a previous paper.12 The current paper will briefly state the results
needed to perform the reconstruction. As the gold standard for comparison we use simulated data using single–slice
spiral CT geometry at a pitch value of p = d/MS = 1.5 where M is the number of simultaneously measured slices and
S is the collimated slice width. These gold standard data are reconstructed using 180◦LI (Linear Interpolation).1

However, comparisons of ASSR are not only performed to the gold standard 180◦LI but also to the multi–slice
algorithms 180◦MFI (Multi–slice Filtered Interpolation)1 for scanners with M = 4 and M = 8 slices.

The simulations of our virtual thorax phantom are presented for a large number of scan geometries, i.e. varying
number M of simultaneously measured slices. The phantom definition can be found in the world–wide phantom
data base at http://www.imp.uni-erlangen.de/phantoms. It is designed to completely fill a field of measurement
(FOM) of 500 mm diameter. The simulated slice thickness is S = 1 mm and the table increments simulated are
d ∈ {1.5, 6, 12, 16, 32, 64, 96} mm. The number M of simultaneous measured slices can be calculated from the overall
constant pitch value p = 1.5 using M = d/pS. The in–plane scanner geometry was chosen to be equivalent to the
SOMATOM Plus 4 Volume Zoom (Siemens, Medical Systems, Erlangen, Germany), i.e. the radius of the FOM is
RM = 250 mm, the distance from the isocenter to the focal spot is RF = 570 mm and thus the fan angle is Φ = 52◦.

2. NOMENCLATURE

This section presents an alphabetically sorted summary of the variables and notations used in the paper. Most of
them will be introduced in the text as well.

The ASSR algorithm will be stated in flat detector coordinates (u, v), for convenience. The transformation from
flat detector coordinates to other geometries, such as the cylindrical detector used in our simulations, is straightfor-
ward and will be omitted here.

x ∨ y maximum function, x ∨ y = max(x, y)

x ∧ y minimum function, x ∧ y = min(x, y)

α projection angle, α ∈ R

α∗ attachment angle of the tilted planes. A reconstruction plane centered about αR will be attached to
the spiral trajectory at α = αR and α = αR ± α∗

α′ focus position relative to the reconstruction position αR, α′ = α − αR

α′

L focus position for the longitudinal approximation to use in rebinning when the rebinned ray has the
parameters ϑ′ and ξ′

αR projection angle about which the reconstruction is centered

d table increment per 360◦ rotation, d ∈ R

D detector plane

cos ε length correction factor to account for the angle ε between the measured ray and the virtual ray
used for reconstruction, see section 3.1

e(α) elliptical trajectory of the virtual focus. The ellipse is tilted by the angle γ to optimally match the
given focus trajectory s(α) in the interval α ∈ [αR − fπ, αR + fπ)

f fraction of 360◦ (in parallel geometry) to be used for reconstruction. Projection angles ϑ within
[−fπ, fπ) will be used considering projections rebinned to parallel geometry. f = 1

2 is a half scan
reconstruction, f > 1

2 means overscan data to reduce interpolation artifacts

2



Φ fan angle, Φ = 2 sin−1(RM/RF)

γ tilt angle of the reconstruction plane R measured with respect to the x–y–plane

o
′ origin of the primed coordinate systems

p pitch value. It is defined as the table increment d divided by the intersection length of the collimated
cone–beam and the z–axis: p = d/MS

p(α, u, v) measured projection data at (α, u, v)

p(ϑ, ξ) rebinned projection data

R reconstruction plane, R ⊃ e(R), see equation (2)

RD distance from detector to center of rotation (z–axis), in our case 435 mm

RF distance from focus to center of rotation (z–axis), in our case 570 mm

RM radius of the field of measurement (FOM), in our case 250 mm

S slice thickness, as projected onto the axis of rotation = physical beam width, i.e. z–range over which
a physical averaging is performed during the measurement process

s(α) spiral focus trajectory

ϑ, ξ beam parameters in parallel geometry

u, v detector coordinates

uF, vF detector coordinates for the fan–beam based approximation

z(x, y) z–coordinate of a point r ∈ R as a function of its x– and y–coordinates

zR reconstruction position of the final (non tilted) image

∆zmean average deviation of the focus from the reconstruction ellipse

(C/W ) window setting of the reconstructed images in HU. C is the window center, W the window width

We will denote the respective reconstruction algorithms and the simulated table increment by appending the
table increment value to the algorithm’s name, for convenience. E.g. ASSR96 means that the reconstruction was
performed using the ASSR algorithm and the scanner used was the one with d = 96 mm. Most comparisons are done
to the standard single–slice algorithm 180◦LI using data simulated with a table increment of d = 1.5 mm which is
consequently denoted as 180◦LI1.5.

3. RECONSTRUCTION

For our considerations we assume the spiral focus trajectory to be as follows:

s(α) =





RF sinα
−RF cosα

dα/2π



 ; α ∈ R .

Thereby, d denotes the table increment per rotation and RF is the distance of the focal spot to the center of rotation.
The parameter α is used to denote the rotational angle of the gantry and since we are dealing with a spiral scan we
can use α to determine the z–position of the focal spot as well.

Assuming a planar detector geometry we use the following parameter representation

D : r(u, v) =





−RD sinα
RD cosα
dα/2π



 + u





cosα
sinα

0



 + v





0
0
1





and the normal representation

D : x sinα − y cosα + RD = 0 .

3



The origin of the detector coordinates (u = 0, v = 0) is the orthogonal projection of the vertex s(α) onto the detector
plane. The parameter RD gives the distance of the detector to the center of rotation. The distance of the focal spot
to the detector plane is given by RD + RF.

The procedure to be described will do a rebinning from the measured attenuation data p(α, u, v) to parallel data
p(ϑ, ξ). The value ϑ describes the angle of the ray with respect to the y–axis and ξ describes its signed distance to the
isocenter. Each single–slice reconstruction will be centered about a certain angle αR and thus the range of ϑ playing
a role for the reconstruction will be ϑ ∈ [αR − fπ, αR + fπ). f ≥ 1

2 is a parameter to adjust the degree of overscan
used for the reconstruction. The minimal value f = 1

2 corresponds to using exactly 180◦ rebinned parallel data.
However, some overscan views might be necessary to reduce artifacts in the images and hence we have introduced
the parameter f (the images shown in this paper all use f = 52%). Of course, the α–range required for rebinning
will be one fan–angle larger than the ϑ–range needed for reconstruction.

The ASSR algorithm aims at predicting the optimal tilted reconstruction plane and thus the optimal elliptical
virtual focus trajectory

e(α) = o
′ + RF





sinα
− cosα

tan γ sin(α − αR)



 with o
′ =





0
0

dαR

2π





such that the physical focus position s(α) deviates only minimally from the virtual focus position e(α) for all
α ∈ [αR−fπ, αR +fπ). The reconstruction plane R, defined by e(R) ⊂ R, can easily be derived from the generalized
ellipse formula:

R : x cosαR tan γ + y sinαR tanγ − z + d
αR

2π
= 0 . (2)

The tilt angle γ is the angle between the reconstruction plane R and the transaxial x–y–plane, tan γ thus gives the
slope of R. Regarding the mean absolute z–deviation

∆zmean =
1

2πf

αR+fπ
∫

αR−fπ

dα |e(α) − s(α)| =
1

2πf

fπ
∫

−fπ

dα′ |RF tanγ sinα′ − d
α′

2π
| =

1

πf

fπ
∫

0

dα′ |RF tan γ sinα′ − d
α′

2π
|

with α′ = α − αR one finds

∆zmean =
d

2π

1

fπ















2π

d
RF tan γ (1 + cosfπ − 2 cosα∗) + 1

2f2π2 − α∗2 for 1 ≤ 2π

d
RF tan γ ≤ fπ

sin fπ
∣

∣

∣

2π

d
RF tan γ (cos fπ − 1) + 1

2f2π2
∣

∣

∣ elsewhere

(3)

where α∗ ∈ [0, π) is given by
2π

d
RF tan γ =

α∗

sinα∗
.

The new angle α∗ is called the attachment angle since it gives the points of intersection of the plane R and the
virtual elliptical trajectory e(R). To be more precise, the spiral scan trajectory and the ellipse will intersect at αR

and αR ± α∗.

Minimizing ∆zmean with respect to the tilt angle γ we find the minimal value

∆zmean = d
f2π2 − 2α∗2

4fπ2

to occur for
cosα∗ = 1

2 (1 + cosfπ).

Using f = 1
2 yields the result α∗ = 60◦ which is quite descriptive since the attachment positions 0◦ and ±60◦

uniformly divide the reconstruction interval ranging from −90◦ to 90◦ (αR was set to zero for this example). In this
case a mean z deviation as low as ∆zmean = d/72 is achieved, i.e. the physical and virtual trajectories differ by 1.4%
of the table feed on average.
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The behaviour of ∆zmean as a function of 2π
d

RF tan γ is shown in figure 1. From this figure it becomes clear that
the optimal region lies around α∗ = 60◦ and one should stay within about ±10◦ from this optimum in order not to
increase the mean z–deviation significantly.

PSfrag replacements

1 2

5%

10%

5%

10%

60◦ 90◦ 120◦

2π

d
RF tanγ

∆zmean

d

α∗

Figure 1. Plot of the relative mean deviation ∆zmean/d as a function of 2π
d

RF tan γ for f = 1
2 . The upper axis

additionally shows the attachment angle α∗ in steps of 10◦. The minimal z–deviation occurs for α∗ = 60◦ which is
equivalent to 2π

d
RF tan γ = 2π/3

√
3 ≈ 1.2092. The thick part of the graph depicts those values for which the case of

three intersections is met and thus α∗ is defined. The region between the two vertical grid lines corresponds to the
first case of equation (3) whereas the regions on the left and right side correspond to the “elswhere” part of (3). It
must be mentioned that although the graph appears to be symmetric with respect to its minimum this actually is
not the case.

3.1. Rebinning

The rebinning procedure to be performed is a fan–based longitudinal optimization.12 For each ray (ϑ, ξ) to be
rebinned into parallel geometry the optimal focus position α′

L (longitudinal approximation) and the optimal detector
coordinates uF and vF (fan–based ray selection) are to be selected as follows:

α′

L(ϑ, ξ) := ϑ + sin−1 ξ

RF
focus position

uF(ϑ, ξ, α′) :=
RD + RF

RF

ξ

cos(α′ − ϑ)
transaxial detector coordinate (4)

vF(ϑ, ξ, α′) :=
RD + RF

RF

(ξ cosα′ tan γ

cos(α′ − ϑ)
− d

α′

2π

)

axial detector coordinate.

The rebinned parallel rawdata p(ϑ, ξ) must be multiplied with the length correction factor

cos ε(α′, ϑ, u, v) =
u sin(α′ − ϑ) cosγ + (RD + RF) cos(α′ − ϑ) cosγ − v sinϑ sin γ

√

u2 + v2 + (RD + RF)2
√

sin2 ϑ + cos2 γ cos2 ϑ

to compensate for the angle between the measured rays and the virtual rays (that lie in the R–plane) that are used
for the reconstruction. Reconstructing these data, using filtered backprojection for example, would yield the tilted
image on a tilted Cartesian grid corresponding to the plane R. Bringing it to Cartesian world coordinates would
require an additional interpolation step from discrete points of the tilted image to the discrete voxel locations of
the world’s Cartesian system. However, it has been shown that this step can be avoided by multiplying the data
with the correction factor cosγ/

√

sin2 ϑ + cos2 γ cos2 ϑ. To summarize, for each ϑ ∈ [αR − fπ, αR + fπ) and each
ξ ∈ [− 1

2RM, 1
2RM] we use the following rebinning equation

p(ϑ, ξ) :=
cosγ cos ε(α′

L, ϑ, uF, vF)
√

sin2 ϑ + cos2 γ cos2 ϑ
p(α′

L + αR, uF, vF)
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where α′

L, uF and vF are given by (4). Applying a 2D reconstruction (plus accounting for a possible overscan) yields
the object function

f(x, y, z)|z=z(x,y)

along the plane R with the correct z–position given from (2) as

z(x, y) = x cosαR tan γ + y sinαR tan γ + d
αR

2π
.

The voxels have the correct x– and y–coordinates (e.g. lying on a rectangular grid in world coordinates) and the
z–position z(x, y), which not necessarily lies on that grid. Thus a z–interpolation step has to follow.

3.2. z–Interpolation

Before the z–interpolation can be performed a certain number of tilted images have to be reconstructed. It can be
shown that using αR ∈ ∆αRZ with the requirement

d
∆αR

2π
+ 2RM tanγ sin 1

2∆αR +
RM

RF
∆zmean ≤ S

imposed on the reconstruction increment ∆αR will ensure to conserve the system’s inherent resolution and thus no
loss of information will occur.12 To gain the pixel’s value fzR

(x, y) at the reconstruction position z = zR we use a
triangular z–filter Λ(·) of width (=half base width)

|d∆αR

2π
+ 2

√

x2 + y2 tan γ sin 1
2∆αR| ∨ z̄

and the weighting equation

fzR
(x, y) :=

∑

αR

Λ(z − zR)f(x, y, z)

∑

αR

Λ(z − zR)

∣

∣

∣

z=z(x,y)
.

The parameter z̄ allows to restrict the minimal filter width used and thus is a control parameter to adjust the
z–resolution in the final images. Large values of z̄ will yield large effective slice thicknesses and low image noise. All
images presented below are reconstructed to achieve highest z–resolution by setting z̄ = 0.

4. RESULTS

A comprehensive comparison of all simulated table increments from d = 1.5 mm to d = 96 mm is shown in figure 2.
Two transversal slices and a coronal MPR are given there. The two slices were selected so as to avoid sharp edges,
such as the end of a spine, along z. This is reasonable because real patients do not have sharp edges perfectly
oriented in the x–y–plane as well. (However, it will be seen later from figure 4 that slices coinciding with the edge
of a vertebrae will yield severe artifacts especially for the gold standard 180◦LI.) The first transaxial slice at table
position zR = 84 mm (left column) represents a case where ASSR starts to show artifacts already for small cone
angle whereas the second slice at zR = 144 mm does not show increasing artifacts with increasing M except for
ASSR64 and ASSR96. The MPRs illustrate ASSR’s performance throughout the complete volume. The high density
structures depicted there are the ribs and the left and right humerus consisting of spheres with inner radius 20 mm
and outer radius 25 mm. Obviously those spheres are depicted without severe artifacts for d ≤ 32 mm. Only for the
two simulations with d = 64 mm and d = 96 mm artifacts become visible around the humerus. ASSR96’s ribs start
to show cone–beam artifacts as well.

To get a more realistic impression of how real patient images would be like when using ASSR noise has to be
added to the rawdata. We have used the function add_noise() with SigmaHU=8.0 as defined at the phantom page
http://www.imp.uni-erlangen.de/phantomsto add noise corresponding to a typical thorax scan. The reconstruc-
tions of the same slices as given in figure 2 are shown in figure 3. The noise level ranges from about 10 HU in the
lower thorax region to about 50 HU in the shoulder region. Obviously most of the cone–beam artifacts are occluded
by the image noise. Only ASSR64 and ASSR96 show some minor artifacts emerging from the patient’s ribs. Thus
no disadvantages as compared to today’s gold standard are to be expected when using ASSR in combination with
medical cone–beam spiral CT. This even applies to future scanners with a number of detector slices significantly
larger than M = 4.
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180◦LI1.5

ASSR6

ASSR12

ASSR16

ASSR32

ASSR64

ASSR96

Figure 2. Comparison of all simulated scanners. Two transaxial views (zR = 84 mm and zR = 144 mm) and
one coronal MPR are shown. The most significant differences appear in the left column where artifacts concentrate
around the phantom ribs. However, except for ASSR96 these artifacts are almost negligible. Only for ASSR96,
streaks emerging from the ribs become strongly apparent in the MPR as well. (0/100)
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180◦LI1.5

ASSR6

ASSR12

ASSR16

ASSR32

ASSR64

ASSR96

Figure 3. Comparison of all simulated scanners using additional quantum noise. The images correspond to figure 2.
Except for ASSR96 the cone–beam artifacts are almost negligible. The noise levels in the center of the axial images
are 10 HU (left column) and 40 HU (middle column) respectively and the noise level in the MPRs (right column)
ranges from 10 HU in the lower thorax to 40 HU in the shoulder for all simulated scanners. (0/100)
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We consider only those artifacts as non negligible that can be discerned under realistic, i.e. noisy, conditions.
Thus, to focus attention on crucial image artifacts, we will use noisy rawdata for all images given below. Thereby,
the noise simulation parameters remain the same as described above.

The improvements obtained by tilting the reconstruction slices in comparison to the original single–slice rebinning
(SSR) which uses non–tilted reconstruction planes11 are shown in figure 4 for the case d = 64 mm. We have used
ASSR with a tilt angle of γ = 0 to obtain the SSR algorithms. Although the tilt angle is typically of the order of a few
degrees only — for ASSR64 we find γ = 1.24◦ — the differences between ASSR64 and SSR64 are very impressive.
Since the reconstructed transversal slice was placed directly at the edge of a vertebrae the gold standard 180◦LI
shows severe artifacts emerging from the spine. These are not shown by ASSR since due to the large table increment
only a few rays used for reconstruction are exactly parallel to the sharp edge. SSR, in contrast, shows severe artifacts
of high amplitude (±100 HU) close to the vertebrae. These artifacts appear not only when reconstructing exactly
at but already close to the end of a vertebrae. In addition, the display of the ribs — showing little artifacts for
ASSR64 — is not acceptable for SSR64. In both, the transaxial slice and the coronal MPR the ribs seem to be a
superposition of two displaced objects.

The number M of simultaneously measured slices will not increase drastically in the near future. It can be
expected that M = 8 or M = 12 are quite realistic values for the next years. Thus it is of interest to compare
ASSR to standard multi–slice z–interpolation algorithms as they are used on today’s 4–slice machines. We use the
widespread z–filtering algorithm 180◦MFI for comparison.1 The results for a typical 4–slice scanner with d = 6 mm
and an 8–slice scanner with d = 12 mm are given in figure 5. It is quite surprising that ASSR shows less artifacts than
180◦MFI even in the case of only 4 simultaneously measured slices. Thus ASSR might have advantages over today’s
standard reconstruction algorithms. Of course the same applies for the 8–slice scanner presented in subfigure 5b.
However, the disadvantage of ASSR is that it does not allow to arbitrarily select the pitch value since the slice
selection is intrinsically built in the ASSR algorithm. The required pitch always lies around p = 1.5, regardless of
how many detector slices are used.12

5. DISCUSSION

ASSR is an efficient method for approximate cone–beam reconstruction. We have demonstrated that its image quality
is comparable to standard single– or multi–slice spiral CT even for a large number of detector slices. It has been
shown in a previous paper that there is no significant difference in performance between ASSR and the single–slice
z–interpolation algorithm 180◦LI.12 To be more precise, ASSR typically requires two to five backprojections per slice
thickness, a value that is also recommended for conventional single–slice and multi–slice spiral CT.1 Since ASSR’s
reconstruction time is dominated by the backprojection step its performance is almost equivalent to the standard
reconstruction algorithms available on medical CT scanners today.

For a large number of different simulated scan geometries no significant variations in ASSR’s image quality have
been observed. It has been shown that the algorithm’s z–resolution and its image noise are comparable to the gold–
standard 180◦LI.12 Since the in–plane resolution is determined by the filtered backprojection step there will be no
differences as compared to conventional CT. In–plane image quality can be adjusted using appropriate reconstruction
kernels as customary in medical CT.

We have demonstrated that ASSR is significantly superior to the original single–slice rebinning method. Thus
the concept of tilted reconstruction planes offers great improvements to approximate cone–beam reconstruction.
Moreover, it has been shown that ASSR is clearly superior to other known approximate cone–beam algorithms
even for large cone angles,13 a fact which not only applies to the achieved image quality but also to the overall
performance: ASSR requires far less computational effort than other approximate algorithms. This is mainly due to
the differences in 2D and 3D backprojection.

Obviously ASSR has great potential to become a practical tool for medical cone–beam reconstruction. The main
disadvantage that ASSR cannot make use of overlapping data acquisition, for example to accumulate dose in order
to reduce image noise, can be avoided by either selecting a slower rotation time or by increasing the tube current.
This disadvantage is negligible compared to the multitude of advantages offered by ASSR: reconstruction speed, high
image quality, flexibility with respect to scanner geometries and misalignments. Obviously, ASSR is a very promising
candidate for future medical and non–medical cone–beam CT applications.
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(a) 180◦LI1.5

(b) ASSR64

(c) SSR64

Figure 4. Comparison between the gold standard 180◦LI, ASSR and the original single–slice rebinning method SSR
with d = 64 mm, denoted here by SSR64. The transaxial slice was selected to coincide with the edge of a vertebrae.
For this case 180◦MLI shows significant artifacts emerging from the spine whereas ASSR64, except for the ribs,
contains artifacts of minor amplitude only. As expected, the original method, SSR64, severely suffers from cone–
beam artifacts due to the increased cone angle. Thus, by tilting the slices, in order to minimize data inconsistencies,
great improvements in image quality are obtained. (0/100)
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180◦MFI6

ASSR6

(a) M = 4, d = 6 mm, S = 1 mm

180◦MFI12

ASSR12

(b) M = 8, d = 12 mm, S = 1 mm

Figure 5. Comparison of the standard z–interpolation algorithm 180◦MFI in comparison to ASSR for small cone
angles. Concentrating upon the artifacts emerging from the ribs in the transversal images it becomes apparent that
ASSR shows improvements as compared to the standard 180◦MFI for both 4 slices (a) and 8 slices (b). The pitch
was set to p = 1.5 for both simulations. (0/100)
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