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Nonlinear Single-Particle Dynamics in High Energy Accelerators

There are six lectures in this course on nonlinear dynamics:

1. First example: nonlinear dynamics in a bunch compressor

2. Second example: nonlinear dynamics in storage rings

3. Hamiltonian mechanics

4. Canonical perturbation theory

5. Lie transformations

6. Symplectic integrators
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In the previous lectures...

We have seen how nonlinear dynamics can play an important

role in some diverse and common accelerator systems.

Nonlinear effects have to be taken into account when designing

such systems.

A number of powerful tools for analysis of nonlinear systems

are developed from Hamiltonian mechanics. We have seen how,

using these tools, the solutions to the equations of motion for

a particle moving through a component in an accelerator

beamline may be represented in various ways, including:

(truncated) power series; Lie transformation; mixed variable

generating function.

Neglecting radiation and interactions between particles, the

map for a particle moving through an accelerator component

should be symplectic.
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In the previous lectures...

The representations of maps we have seen so far all have some

drawbacks.

• A Lie transformation provides a symplectic representation

of a map, but is not explicit (it is not in a form that can be

applied directly).

• We can “evaluate” a Lie transformation as a power series;

but in general the power series contains an infinite number

of terms, and if we truncate the series, the map is no

longer symplectic.

• We can construct a generating function from a truncated

power series, but this provides an implicit representation of

the map, that requires numerical iteration for its

application.
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In this lecture...

In this lecture, we shall develop one of several possible methods

for constructing representations that are both explicit (can be

applied directly, without requiring numerical solution of

equations) and symplectic.

Such a representation is sometimes known as a “symplectic

integrator”.

The method we shall develop here, known as “symmetric” or

“Yoshida” factorisation, is one of the most common and most

useful.

Lie transformations provide a useful starting point for

symmetric factorisation.
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Reminder: Lie transformations

A Lie transformation is written as:

M = e−∆s:h: (1)

where the Lie operator :h: is defined by:

:h: =
∂h

∂~q

∂

∂~p
−
∂h

∂~p

∂

∂~q
. (2)

~q are the coordinates and ~p the conjugate momenta; h is a

function of ~q and ~p. The exponential operator is defined in

terms of its series expansion:

e−∆s:h: = 1−∆s :h: +
∆s2

2
:h:2 −

∆s3

3!
:h:3 + · · · (3)

If h is the Hamiltonian of the system, then the evolution of any

function of the phase space variables is given by:

df

ds
= −:h:f, f(s0 + ∆s) = e−∆s:h:f

∣∣∣
s=s0

. (4)
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Constructing maps from Lie transformations

In a previous lecture, we showed how to construct a map in the

form of a power series, using a Lie transformation with a given

Hamiltonian.

Unfortunately, the power series usually contains an infinite

number of terms.

To apply the map in practice, we either have to sacrifice

symplecticity, or resort to an implicit representation that

requires a (slow!) numerical iteration process for its solution.

In either case, we end up with an approximate representation of

the map.
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Constructing maps from Lie transformations

An alternative approach, which we shall now develop, makes an

approximation to the Hamiltonian instead of to the power

series constructed from the Lie transformation.

The goal is to make an approximation to the Hamiltonian in

such a way that the resulting Lie transformation can be

expressed as a power series with a finite number of terms.
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The algebra of Lie transformations

We begin by stating five rules for algebraic manipulation of Lie

transformations. It is convenient at this point to introduce the

notation [·, ·], which is called the Poisson bracket:

[f, g] =
∂f

∂~q

∂g

∂~p
−
∂f

∂~p

∂g

∂~q
. (5)

Clearly, with our previous definition (2) for the Lie operator, we

have:

:f:g = [f, g] . (6)

It is possible to show (by writing out the derivatives explicitly)

that for any functions f , g and h, the Poisson bracket satisfies

the Jacobi identity:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] ≡ 0. (7)
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Lie transformation algebra: Rule 1

The first rule that we state is simply the series expression for a

Lie transformation with generator f :

e:f :g = g + [f, g] +
1

2
[f, [f, g]] + · · · (8)
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Lie transformation algebra: Rule 2

The second rule tells us how to take the Lie transformation of

a product of two functions:

e:f :(gh) =
(
e:f :g

) (
e:f :h

)
. (9)

This result may be obtained by writing the Lie transformation

as a series, and applying the product rule for differentiation.

It may also be obtained without lengthy algebra, by considering

the role of a Lie generator in obtaining the value of a function

at time t0 + ∆t from the value of the function at time t = t0
(see Exercise 1).
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Lie transformation algebra: Rule 3

The third rule is a little subtle: it tells us how to take the Lie
transformation of a function of a function:

e:f :g(h) = g
(
e:f :h

)
. (10)

This result may be shown in a similar way to Rule 2 (see
Exercise 2). The subtlety becomes apparent when we want to
concatenate maps, i.e. apply one map after another. Consider
the map for a drift space of length LD:

R = e−
1
2LD:p2:, (11)

and the map for a thin sextupole, of strength k2LS:

S = e−
1
6k2LS:q3:. (12)

The total map for a drift followed by a sextupole is:

RS = e−
1
2LD:p2: e−

1
6k2LS:q3:. (13)

Note that we write the Lie transformations in the order that
the elements appear in the beamline: we do not reverse the
order, as we would for transfer matrices (see Exercise 3).
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Lie transformation algebra: Rule 4

The fourth rule tells us how to take the Lie transformation of a

Poisson bracket:

e:f : [g, h] =
[
e:f :g, e:f :h

]
. (14)

This result may be shown in a similar way to Rules 1 and 2.

(Note that if g and h are functions of the phase space variables,

then so are their derivatives with respect to those variables.)
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Lie transformation algebra: Rule 5

The fifth rule is very important and useful:

e:f : e:g: e−:f : = e:h:, where h = e:f :g. (15)

Unfortunately, it is not easy to show this result; and for a

rigorous proof, the student is referred to the literature, e.g.

Dragt. However, we can outline a proof as follows. First,

consider the operator:

Mτ = eτ :f : :g: e−τ :f : (16)

where τ is a parameter. Note that:

M0 = :g: . (17)

We can take derivatives of M with respect to τ :

dMτ

dτ

∣∣∣∣
τ=0

= :f: :g:− :g: :f: = :(:f:g): (18)

where, in the final step, we have applied the Jacobi identity (7).
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Lie transformation algebra: Rule 5

We find that higher derivatives are given by:

dnMτ

dτn

∣∣∣∣∣
τ=0

= :(:f:ng): . (19)

Hence, we can write:

Mτ = :g: + τ
dMτ

dτ

∣∣∣∣
τ=0

+
1

2
τ2d

2Mτ

dτ2

∣∣∣∣∣
τ=0

+
1

3!
τ3d

3Mτ

dτ3

∣∣∣∣∣
τ=0

+ · · ·

= :g: + τ :(:f:g): +
1

2
τ2:(:f:2g): +

1

3!
τ3:(:f:2g): + · · ·

= :(eτ :f :g): (20)

In particular, putting τ = 1, we find:

e:f : :g: e−:f : = :(e:f :g): (21)
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The Baker-Campbell-Hausdorff formula

Now, since the Lie operator is a differential operator, we can

generalise this result, for any function F :

e:f : F (:g:) e−:f : = F (:(e:f :g):) (22)

In particular, with F (x) = ex, we have (15):

e:f : e:g: e−:f : = exp(:e:f :g:)

Nonlinear Dynamics 15 Part 6: Symplectic Integrators



The Baker-Campbell-Hausdorff formula

Equation (15) is important because it allows us to combine Lie

transformations.

However, it is special in the sense that it involves “squeezing”

one Lie transformation (e:g:) between another Lie transformation

(e:f:) and its inverse (e−:f:).

More generally, we can look for the combination of two Lie

transformations:

e:A: e:B: = e:C:. (23)

The expression for C in terms of A and B is known as the

Baker-Campbell-Hausdorff formula, or the BCH formula, for

short.
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The Baker-Campbell-Hausdorff formula

The BCH formula applies to any non-commutative algebra, not

just the algebra of Lie operators.

There is a general expression for the BCH formula, but it is not

very enlightening. The first few terms are given as follows:

e:A: e:B: = e:C:

where:

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]]

+
1

24
[[[A,B] , A] , B] + · · ·

(24)
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The Zassenhaus formula

An expression related to the BCH formula, known as the

Zassenhaus formula, tells us how to factorise a Lie

transformation whose generator is expressed as a sum:

e:A+B: = e:A: e:B: e−
1
2:[A,B]: e

1
3:[B,[A,B]]:+1

6:[A,[A,B]]: · · · (25)
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An explicit symplectic integrator for a sextupole

The BCH formula is immediately useful for us, in our goal of

constructing explicit symplectic integrators for accelerator

beamline components, as we shall now show.

As an example, we will consider motion of a particle through a

sextupole magnet.

Consider a simplified Hamiltonian for a sextupole in one degree

of freedom:

H =
1

2
p2
x +

1

6
k2 x

3. (26)

The equations of motion for this Hamiltonian have no closed

form solution. The map obtained from the Lie transformation:

S = e−L :H: (27)

(for a sextupole of length L) can be expressed as a power

series, but this series contains an infinite number of terms.
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An explicit symplectic integrator for a sextupole

However, we notice that each of the two terms in the

Hamiltonian (26) on its own does generate a Lie

transformation that can be expressed in closed form:

e−L:Hd: x= x+ Lpx, e−L:Hd: px = px,

e−L:Hk: x= x, e−L:Hk: px = px − 1
2k2Lx

2,

(28)

where Hd = 1
2p

2
x and Hk = 1

6k2x
3. Using the BCH formula:

e−L:Hd: e−L:Hk: = e−L:H −1
2L[Hd,Hk]+O(L3):. (29)

In other words, we can represent the map for a sextupole as a

composition of Lie transformations (each of which can be

expressed explicitly in closed form) with an “error” of order L2

in the generator for the complete map.
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An explicit symplectic integrator for a sextupole

If the sextupole is short, then the above map (29) may be

good enough.

However, we can ask the question:

Is it possible to express the map for a sextupole as the

composition of Lie transformations, each of which may be

expressed explicitly in closed form, and with an error (after

composition) of order L3, or higher?
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An explicit symplectic integrator for a sextupole

The answer (of course) is yes!

Consider the map:

e−d1L:Hd: e−L:Hk: e−d2L:Hd: = e−d1L:Hd: e−L:d2Hd+Hk−1
2d2L[Hk,Hd]+O(s2):

= e−L:(d1+d2)Hd+Hk−1
2(d1−d2)L[Hk,Hd]+O(L2):.

(30)

Clearly, if we choose:

d1 = d2 =
1

2
, (31)

then we find:

e−
1
2L:Hd: e−L:Hk: e−

1
2L:Hd: = e−L:H:+O(L3). (32)
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An explicit symplectic integrator for a sextupole

Let us just pause to consider what we have achieved.

We have seen that the map (29):

e−L:Hd: e−L:Hk: = e−L:H:+O(L2)

allows us to construct an explicit symplectic map in closed form

for a sextupole, but with error of order L2 in the generator.

Inspecting the left hand side, we see that the map may be

interpreted as a drift (for the length of the sextupole) followed

by a horizontal kick (with strength corresponding to the

integrated strength of the sextupole).
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An explicit symplectic integrator for a sextupole

Similarly, we find that the map (32):

e−
1
2L:Hd: e−L:Hk: e−

1
2L:Hd: = e−L:H:+O(L3)

allows us to construct an explicit symplectic map in closed form

for a sextupole, but with error of order L3 in the generator.

Inspecting the left hand side, we see that the map may be

interpreted as a drift (for half the length of the sextupole),

followed by a horizontal kick (with strength corresponding to

the integrated strength of the sextupole), followed finally by

another drift (for half the length of the sextupole).

Simply putting the kick in the centre of the sextupole provides

a higher-order approximation than putting the kick at the start,

or at the end.
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An explicit symplectic integrator for a sextupole

If we wish, we can continue the process to higher order. The

algebra gets rather formidable, but we only need to do it once

for a given accelerator component.

A map accurate to fourth order (in the Lie generator) for a

sextupole is given by:

e−d1L:Hd: e−c1L:Hk: e−d2L:Hd: e−c2L:Hk: e−d2L:Hd: e−c1L:Hk: e−d1L:Hd:

= e−L:H:+O(L5)

(33)

where:

d1 =
1

12

(
4 + 2 3√2 + 3√4

)
, (34)

and:

d2 =
1

2
− d1, c1 = 2d1, c2 = 1− 4d1. (35)
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An explicit symplectic integrator for a sextupole

The “fourth-order explicit symplectic integrator” (33) is an

interesting result. It tells us that if we are to approximate a

sextupole (or, indeed, any higher-order multipole) by a

sequence of drifts and thin kicks, then there is an optimal way

to choose the drift lengths and kick strengths.

Taking a more simplistic approach, one would divide the

element into a number of equal drifts and kicks; a moment’s

reflection suggests that this should give an accurate answer in

the limit of a large number of drifts and kicks. But we have

found from an approach based on Lie transformations that by

choosing the drift lengths and kick strengths carefully, we can

obtain a more accurate result than we would using a similar

number of equally divided drifts and kicks.

The above technique is one of the most useful and practical for

constructing explicit symplectic integrators. It is sometimes

known as “symmetric factorisation”, or “Yoshida factorisation”.

Nonlinear Dynamics 26 Part 6: Symplectic Integrators

An explicit symplectic integrator for a sextupole

Before we make some comparisons between the explicit
symplectic integrator we have derived here and the maps we
have derived in previous lectures, let us pause to consider more
carefully the Hamiltonian for a sextupole.

Properly, the Hamiltonian for a sextupole is given by:

H = −

√√√√( 1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+
1

6
k2

(
x3 − 3xy2

)
+

δ

β0
.

(36)
We can express this as a sum of two integrable Hamiltonians:

H = Hd +Hk, (37)

where

Hd = −

√√√√( 1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+
δ

β0
, (38)

and

Hk =
1

6
k2

(
x3 − 3xy2

)
. (39)
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An explicit symplectic integrator for a sextupole

The Hamiltonian Hd is just the Hamiltonian for a drift space,

and generates the map that we saw in Lecture 3:

x1 =x0 + Lpx0
ps0

, px1 = px0,

y1 = y0 + L
py0
ps0

, py1 = py0,

z1 = z0 + L

(
1
β0
−

1
β0

+δ0

ps0

)
, δ1 = δ0,

(40)

where

ps0 =

√√√√( 1

β0
+ δ0

)2

− p2
x0 − p

2
y0 −

1

β2
0γ

2
0
. (41)
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An explicit symplectic integrator for a sextupole

The Hamiltonian Hk generates the map for a thin sextupole

kick:

x1 =x0, px1 = px0 − 1
2k2L

(
x2

0 − y
2
0

)
,

y1 = y0, py1 = py0 + k2Lx0y0,

z1 = z0, δ1 = δ0.
(42)

Using the Hamiltonians Hd and Hk, we can construct a

second-order integrator for a sextupole (32), or a fourth-order

integrator (33).

When applying these results, it is important to remember that

the final values from the application of one Lie transformation

become the initial values for the application of the next Lie

transformation.
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Note: the paraxial approximation

Many tracking codes assume that the transverse momenta are
small: √

p2
x + p2

y � 1. (43)

In that case, it is possible to expand the square root in the
Hamiltonian for a drift space, Hd (38) to second order in px, py:

Hd = −

√√√√( 1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+
δ

β0
≈

p2
x

2D
+

p2
y

2D
+

δ

β0
−D,

(44)
where

D =

√
1 +

2δ

β0
+ δ2 ≈ 1 +

δ

β0
. (45)

The final approximation (for D) is valid for |δ| � 1. The
approximation (44) is known as the paraxial approximation, and
is used quite widely. However, as we have seen, it is not always
necessary to make the paraxial approximation to obtain
higher-order symplectic integrators (at least for common
multipole magnets).
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Comparison of maps

We can compare the explicit symplectic integrators for a

sextupole derived in this lecture with those derived in previous

lectures. Recall that we had three different representations:

• power series truncated at some order in the length of the

sextupole;

• power series truncated at some order in the dynamical

variables;

• implicit (mixed variable) map.

The truncated power series maps are strictly non-symplectic,

though we expect the “symplectic error” to get smaller if we

truncate at higher order. The implicit map is symplectic, but

requires numerical iteration in its application, so tends to be

rather slow.
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Comparison of maps

Recall that our “canonical example” is a phase-space rotation

through 0.246×2π radians, followed by a sextupole with length

L = 0.1 m, and strength k2 = −6000 m−3.

It is a bit difficult to decide exactly which orders to compare.

Just for illustration, we shall select the 10th order truncated

power series maps, and the 5th order implicit map. We shall

compare the 2nd order and 4th order explicit symplectic

integrators with these maps.

(Note that the order of the symplectic integrator refers to the

accuracy of the generator of the map, not the accuracy of the

power series representation.)
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Comparison of maps

First, we compare the phase space portraits obtained using the

2nd order and 4th order explicit symplectic integrators:
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Comparison of maps
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Comparison of maps
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Comparison of maps

Clearly, there are some differences between all these maps.

What is not so clear, is how significant these differences are.

We should remember that none of the maps shown in these

comparisons is an “exact” map for the sextupole: in fact, we

are still not capable of constructing an exact map in a form

that is appropriate for fast tracking.

You should, by now, have some appreciation of why any two

tracking codes will generally disagree about the details of the

dynamical behaviour of particles in an accelerator beamline.

It is always necessary to make some compromise between speed

and accuracy; exactly how that compromise is made will affect

the results.
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Factorisations

We should mention that many techniques have been developed

for converting between power series maps and Lie

transformations: there are various applications for these

techniques, that we will not go into here.

However, it is worth noting that often, one wishes to factorise

a map into linear and nonlinear components. This leads to a

Deprit factorisation:

M = R e:g:, (46)

where R is a linear map (that may be represented, for example,

by a matrix, or by a Lie transformation with a generator that is

a second-order polynomial in the phase space variables), and g

is a polynomial containing terms that are third-order and higher

in the dynamical variables.
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Factorisations

Also worth noting is the Dragt-Finn factorisation, that

expresses a map as:

M =
∏
n=2

e:gn:, (47)

where gn is a homogeneous polynomial of order n in the

dynamical variables.

The benefit of a Dragt-Finn factorisation, is that it is possible

to “truncate” the map while retaining symplecticity, simply by

dropping factors higher than a desired order.

Clearly, the generators appearing in the Dragt-Finn and the

Deprit factorisations of a given map are related by the BCH

formula. Usually, though, one starts from a given power series

map, and constructs the generators for one or other

factorisation by following a systematic procedure.
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Factorisations

Finally, we note the Irwin factorisation. This is of the form:

M =
∏
e:rn: · e:kn:, (48)

where rn is a homogeneous second-order polynomial

(generating a linear map) and each kn generates an integrable

map.

The benefit of the Irwin factorisation is that it is possible to

construct an explicit power series map, just by applying the Lie

transformations to the dynamical variables.

Again, techniques exist for constructing a map represented as

an Irwin factorisation from a given power series map. We then

have a technique for “symplectification” of a power series.
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Final remark...

We now have a technique for constructing an explicit

symplectic map for a multipole magnet.

However, accelerator beamlines often use more complex

components, such as undulators and wigglers.

It is possible to extend some of the techniques developed in

this lecture to construct maps for more complex configurations

of magnetic fields than exist in simple multipoles.

An example of such a technique is the “explicit symplectic

integrator for s-dependent static magnetic field” developed by

Wu, Forest and Robin (Phys. Rev. E 68, 046502 (2003)).

Nonlinear Dynamics 40 Part 6: Symplectic Integrators

Exercises

1. Using the Hamiltonian H as a generator for a Lie transformation, write
down the the value of a function g at time t0 + ∆t in terms of the value
of the function at time t = t0. Hence, by considering g as the product of
two functions, show Rule 2 (9) for the algebra of Lie transformations:

e:f :(gh) =
(
e:f :g

) (
e:f :h

)
.

(Hint: write f = −∆tH).

2. Using the same ideas as in Exercise 1, show Rule 3 (9):

e:f :g(h) = g
(
e:f :h

)
.

3. Consider horizontal motion of a particle in a section of accelerator
beamline consisting of a drift of length LD followed by a thin sextupole
of strength k2LS. Show that the combined map for this section of
beamline may be written:

x1 = x0 + LDpx0

px1 = px0 +
1

6
k2LS (x0 + LDpx0)2 .

Show that this map may be obtained from the Lie transformation (13):

RS = e−
1

2
LD:p2

x: e
1

6
k2LS:x3:.
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