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Nonlinear Single-Particle Dynamics in High Energy Accelerators

There are six lectures in this course on nonlinear dynamics:

1. First example: nonlinear dynamics in a bunch compressor

2. Second example: nonlinear dynamics in storage rings

3. Hamiltonian mechanics

4. Canonical perturbation theory

5. Lie transformations

6. Symplectic integrators
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In the previous lectures...

We have seen how nonlinear dynamics can play an important

role in some diverse and common accelerator systems.

Nonlinear effects have to be taken into account when designing

such systems.

Hamiltonian mechanics provides a useful framework for analysis

of nonlinear systems.

In Hamiltonian mechanics, the behaviour of a dynamical system

is described using canonical variables. The equations of motion

are derived from a Hamiltonian, which is a function of the

dynamical variables and (in general) the independent variable.

In this lecture, we shall see how we can use canonical

transformations to solve (to some order in a perturbation

parameter) the equations of motion for a system with a small

nonlinear perturbation.
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In this lecture...

In particular, we shall aim to understand features of phase

space portraits that can be constructed by tracking multiple

particles multiple times through a periodic beam line (e.g. a

storage ring).
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In this lecture...

There are two common approaches to analysis of nonlinear

periodic systems:

1. Canonical perturbation theory, based on canonical

transformation of an s-dependent Hamiltonian.

2. Normal form analysis, based on Lie transformation of a

single-turn map.

In fact, both these approaches are really attempting to do the

same thing: the goal is to find a transformation that puts the

Hamiltonian, or the map, into the simplest possible form.

In this lecture, we shall develop the first approach, canonical

perturbation theory.
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Canonical perturbation theory

In general terms, the steps involved in canonical perturbation

theory are as follows:

1. Write down the Hamiltonian for a particle moving through

a beamline with some nonlinear perturbation.

2. Construct a canonical transformation to define variables in

which the perturbation is removed to some order.

3. Solve the equations of motion in the new variables.

4. Use the canonical transformation from Step 2 to obtain the

solution to the equations of motion in the original variables.
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Hamiltonian for a periodic beam line

For clarity, we shall work in one degree of freedom. The

extension to multiple degrees of freedom lengthens the algebra,

but does not add any significant new features.

In action–angle variables (J and φ), the Hamiltonian for a

periodic beam line can be written as:

H =
J

β
+ εV (φ, J, s), (1)

where β is the Courant–Snyder beta function, the perturbation

term V contains the nonlinear features of the dynamics, and ε

is a small parameter.

In general, V depends on the independent variable, s (the

position along the reference trajectory).
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Hamiltonian for a periodic beam line

In most cases, the equations of motion following from (1) are

difficult to solve.

Our first goal is to find a canonical transformation that removes

the nonlinear term from the Hamiltonian, to first order in ε.

The equations of motion in the new variables will be easy to

solve, at least in the approximation that terms of higher order

in ε may be neglected.

In fact, since we explicitly remove any dependence on φ from

the Hamiltonian, solutions to the equations of motion can be

written:

J1 = constant (2)

where J1 is the action variable in the transformed coordinates.
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Hamiltonian for a periodic beam line

For reasons that will become clearer shortly, let us generalise

the Hamiltonian (1), by replacing the linear term by a general

function of the action variable:

H = H0(J) + εV(φ, J, s). (3)

Then, we define ωβ as:

ωβ =
dH0

dJ
. (4)

For purely linear motion, H0 = J/β, so ωβ = 1/β which is the

betatron frequency (the betatron phase advance per unit length

of beam line).

But in general, ωβ is a function of the betatron amplitude

(i.e. a function of the betatron action, J).
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Generating function

Let us consider a generating function of the second kind:

F2(φ, J1, s) = φJ1 + εG(φ, J1, s). (5)

The new and old dynamical variables and Hamiltonians are

related by:

J =
∂F2

∂φ
= J1 + ε

∂G

∂φ
, (6)

φ1 =
∂F2

∂J1
= φ+ ε

∂G

∂J1
, (7)

H1 = H +
∂F2

∂s
= H + ε

∂G

∂s
. (8)

We see that if ε is small, then the transformation is close to the

identity.
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Generating function

The new Hamiltonian can be written as:

H1 = H0

(
J1 + ε

∂G

∂φ

)
+ εV

(
φ, J1 + ε

∂G

∂φ
, s

)
+ ε

∂G

∂s
. (9)

Note that in this form, the Hamiltonian is expressed in terms of

the “mixed” variables φ and J1.

Eventually, to solve the equations of motion, we will need to

substitute for φ, so that the Hamiltonian is expressed purely in

terms of the new variables (φ1, J1).

For now, however, it is convenient to leave the Hamiltonian in

the mixed form.

Our goal is to find a function G such that H1 is (to first order

in ε) a function of J1 only.
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Generating function

By adding and subtracting appropriate terms, we can rewrite

the Hamiltonian as:

H1 = H0(J1) +H0

(
J1 + ε

∂G

∂φ

)
−H0(J1)

+εV

(
φ, J1 + ε

∂G

∂φ
, s

)
− εV (φ, J1, s) + εV (φ, J1, s)

+ε
∂G

∂s
, (10)

≈ H0(J1) + ε

[
ωβ(J1)

∂G

∂φ
+
∂G

∂s
+ V (φ, J1, s)

]

+ε2
∂G

∂φ

∂

∂J1
V (φ, J1, s). (11)

Note that in the last step, we have used the definition

ωβ(J1) = H ′0(J1).

Nonlinear Dynamics 11 Part 4: Canonical Perturbation Theory



Generating function

We see that if we can find a generating function

F2 = φJ1 + εG(φ, J1, s) where G satisfies:

ωβ(J1)
∂G

∂φ
+
∂G

∂s
+ V (φ, J1, s) = 0, (12)

then the terms in ε in the Hamiltonian H1 are second-order and

higher:

H1 ≈ H0(J1) + ε2
∂G

∂φ

∂

∂J1
V (φ, J1, s). (13)
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Generating function

In an accelerator beam line, the perturbation V can be written

in terms of the coordinate x.

Since x is a periodic function of φ, it must be the case that V

is also a periodic function of φ. Therefore, we can write:

V (φ, J1, s) =
∑
m
Ṽm(J1, s) e

imφ. (14)

We assume that the function G appearing as a term in the

generating function F2 is also periodic in φ:

G(φ, J1, s) =
∑
m
G̃m(J1, s) e

imφ. (15)
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Generating function

In terms of the Fourier coefficients Ṽm and G̃m, equation (12)

becomes: (
imωβ(J1) +

∂

∂s

)
G̃m = −Ṽm. (16)

By substitution into equation (16), we see that the solution for

G̃m(J1, s) is:

G̃m(J1, s) =
i

2 sin
(

1
2mωβL

) ∫ s+L

s
e
imωβ

(
s′−s−L2

)
Ṽm(J1, s

′) ds′,

(17)

where L is the length of one periodic section of the beam line.
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Generating function

Strictly speaking, the solution (17) assumes that the betatron

frequency ωβ is constant along the beam line (i.e. that ωβ is

independent of s).

However, we can generalise this result. If we define the phase

ψ(s) and the “tune” ν:

ψ(s) =
∫ s

0
ωβ ds, ν =

1

2π

∫ s+L

s
ωβ ds, (18)

then we can write the expression for G̃m(J1, s):

G̃m(J1, s) =
i

2 sin(πmν)

∫ s+L

s
eim[ψ(s′)−ψ(s)−πν]Ṽm(J1, s

′) ds′.

(19)
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Generating function

Finally, the function Gm(φ, J1, s) can be written:

G(φ, J1, s) =
∑
m

i

2 sin(πmν)

∫ s+L

s
eim[φ+ψ(s′)−ψ(s)−πν]Ṽm(J1, s

′) ds′.

(20)

Equation (20) is an important result: it tells us how to
construct a canonical transformation that removes (to first
order) an s-dependent perturbation from the Hamiltonian.

We can already see some interesting properties: for example,
the expression for G gets large when mν is close to an integer.

Even a small perturbation can have a large effect when the
lattice is tuned to a resonance. But the impact of the
perturbation also depends on the resonance strength (i.e. the
integral in (20)).

If the resonance strength is zero, then we can sit right on a
resonance without adverse effect.
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Generating function

Note that if V (φ, J1, s) has a non-zero average over φ, then

Ṽ0(J1, s) is non-zero. This implies there is a resonance strength

for m = 0, given by: ∫ s+L

s
Ṽ0(s′) ds′. (21)

But for m = 0, mν is an integer (zero) for all ν.

Therefore, no matter what the tune of the lattice, we cannot

construct a generating function to remove any term in the

perturbation that is independent of φ.

However, such terms may be absorbed into H0(J): this is the

reason why we introduced H0(J) (as a generalisation of J/β) in

the first place.
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Generating function

The canonical transformation (5):

F2(φ, J1, s) = φJ1 + εG(φ, J1, s)

removes the perturbation term in the Hamiltonian, so that:

H1 = H0(J1) +O(ε2). (22)

Since H1 is independent of φ1 (to first order in ε), we can write:

J1 = constant +O(ε2). (23)

The original action variable J is given by (6):

J = J1 + ε
∂

∂φ
G(φ, J1, s),

where J1 is a constant.

At a given location in the beam line (i.e. for a given s), we can

construct a phase space portrait by plotting J as a function of

φ (between 0 and 2π) for different values of J1.
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First-order perturbation theory: quadrupole example

Equipped with equation (20), we are now ready to look at

some examples.

Before proceeding to a nonlinear case (for example, a sextupole

perturbation), we will consider a linear perturbation.

We can use the expressions we have just derived to calculate

the change in tune and the change in beta function that we

expect from a quadrupole perturbation.

We can compare the results from perturbation theory with the

results that we can obtain from a purely linear theory.

Nonlinear Dynamics 19 Part 4: Canonical Perturbation Theory



First-order perturbation theory: quadrupole example

In cartesian variables, the Hamiltonian for a quadrupole

perturbation is:

H =
p2

2
+K(s)

x2

2
+ εk(s)

x2

2
. (24)

The first two terms can be written in action–angle variables as

J/β(s).

The perturbation term (in ε) can be transformed into

action–angle variables using:

x =
√

2β(s)J cos(φ). (25)

Thus, we have:

H =
J

β(s)
+

1

2
εk(s)β(s)J(1 + cos(2φ)). (26)
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First-order perturbation theory: quadrupole example

We see immediately that the perturbation introduces a term

independent of φ. We therefore define:

H0(J) =
J

β(s)
+

1

2
εk(s)β(s)J, (27)

so that the Hamiltonian is written:

H = H0(J) +
1

2
εk(s)β(s)J cos(2φ). (28)

The tune of the lattice is given by:

ν =
1

2π

∫ s+L

s

dH0

dJ
ds′ =

1

2π

∫ s+L

s

ds′

β(s′)
+

ε

4π

∫ s+L

s
k(s′)β(s′) ds′.

(29)

This is the same as the expression obtained using standard

linear theory.
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First-order perturbation theory: quadrupole example

To find the change in beta function, we use equation (20).

This will give us a (canonical) transformation to new variables

J1, φ1. To first order in the perturbation ε, J1 is constant.

First, we need the Fourier transform of the (φ dependent part

of the) perturbation. From equation (14), we have:

Ṽm(J1, s) =
1

2π

∫ 2π

0
e−imφV (φ, J1, s) dφ, (30)

where:

V (φ, J1, s) =
1

2
k(s)β(s)J1 cos(2φ). (31)

Thus:

Ṽ±2(J1, s) =
1

4
k(s)β(s)J1, (32)

with all other Ṽm equal to zero.
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First-order perturbation theory: quadrupole example

Substituting for Ṽ±2(J1, s) into equation (20) gives:

G(φ, J1, s) =

−
J1

4 sin(2πν)

∫ s+L

s
sin

[
2
(
φ+ ψ(s′)− ψ(s)− πν

)]
k(s′)β(s′) ds′.

(33)

Note that the phase advance ψ and the tune ν include the

phase shift resulting from the perturbation, i.e.

ψ(s) =
∫ s

0

ds′

β(s′)
+
ε

2

∫ s
0
k(s′)β(s′) ds′, (34)

and (29):

ν =
1

2π

∫ s+L

s

ds′

β(s′)
+

ε

4π

∫ s+L

s
k(s′)β(s′) ds′. (35)
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First-order perturbation theory: quadrupole example

At a given location in the beam line, the invariant curves in

phase space (the “contour lines” in a phase space portrait) are

given by (24):

J = J1 + ε
∂

∂φ
G(φ, J1, s) +O(ε2), (36)

where J1 is a constant, and φ varies from 0 to 2π.

Using (33), we find:

J = J1 −
εJ1

2 sin(2πν)

∫ s+L

s
cos

[
2
(
φ+ ψ(s′)− ψ(s)− πν

)]
k(s′)β(s′) ds′

+O(ε2).

(37)
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First-order perturbation theory: quadrupole example

The effect of a quadrupole perturbation may be represented as

a distortion of the beta function.

The change in the beta function can be calculated by

considering a particle with a given x coordinate, and with φ = 0.

In terms of the unperturbed action J and unperturbed beta

function β, we would write:

x =
√

2βJ. (38)

In terms of the perturbed action J1 and beta function β1 we

have:

x =
√

2β1J1. (39)
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First-order perturbation theory: quadrupole example

Therefore, since βJ = β1J1, we have:

∆β

β
= −

∆J

J
= −

J1 − J
J

. (40)

Finally, from (37), the change in the beta function resulting

from a small quadrupole perturbation is:

∆β(s)

β(s)
= −

ε

2 sin(2πν)

∫ s+L

s
cos

[
2
(
ψ(s′)− ψ(s)− πν

)]
k(s′)β(s′) ds′.

(41)

For small ε, this is the same as the result that would be derived

using transfer matrices to represent the dynamics with and

without the perturbation.
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First-order perturbation theory: sextupole example

As a second example, let us consider the perturbation
introduced by sextupole components in the lattice.

Again, we follow closely the analysis of Ruth; and to keep
things simple, we again consider only one degree of freedom.

The Hamiltonian is given by:

H =
p2

2
+K(s)

x2

2
+ εk2(s)

x3

6
. (42)

In action–angle variables, the Hamiltonian becomes:

H =
J

β(s)
+ εk2(s)

(2β(s)J)
3
2

6
cos3(φ), (43)

= H0(J, s) + εV (φ, J, s), (44)

where:

H0(J, s) =
J

β(s)
, and V (φ, J, s) = k2(s)

(2β(s)J)
3
2

6
cos3(φ).
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First-order perturbation theory: sextupole example

We can write the perturbation term as:

V (φ, J, s) =
1

24
k2(s) (2β(s)J)

3
2 (cos(3φ) + 3 cos(φ)) . (45)

Using equation (20), the generating function that will remove

the perturbation to first order in ε is F = φJ1 + εG, where:

G =−
(2J1)

3
2

16

{
1

sin(πν)

∫ s+L

s
k2(s′)β(s′)

3
2 sin

(
φ+ ψ(s′)− ψ(s)− πν

)
ds′

+
1

3 sin(3πν)

∫ s+L

s
k2(s′)β(s′)

3
2 sin

[
3
(
φ+ ψ(s′)− ψ(s)− πν

)]
ds′
}

(46)

where:

ψ(s) =
∫ s+L

s

ds′

β(s′)
. (47)
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First-order perturbation theory: sextupole example

The first-order invariant J1 is given by equation (24):

J = J1 + ε
∂

∂φ
G(φ, J1, s) +O(ε2).

If we know the sextupole distribution along the beamline, we

can evaluate G from (46). Equation (24) then gives us the

invariant, which allows us to plot the phase space.

As a specific example, consider a single thin sextupole located

in a storage ring at s = 0. We assume that the sextupole is the

only nonlinear element in the ring.

The sextupole strength k2(s) can be represented by a Dirac

delta function:

k2(s) = k2` δ(0). (48)
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First-order perturbation theory: sextupole example

We shall plot the phase space at s = 0. From equation (46),

we find that:

G = −
(2J1)

3
2

16
k2` β(0)

3
2

[
sin(φ− πν)

sin(πν)
+

sin[3(φ− πν)]

3 sin(3πν)

]
. (49)

From equation (24) the action variable J at s = 0 is related to

the (first order) invariant J1 by:

J = J1 + ε
∂G

∂φ

= J1 − ε
(2J1)

3
2

16
k2` β(0)

3
2

[
cos(φ− πν)

sin(πν)
+

cos[3(φ− πν)]

sin(3πν)

]
+O(ε2).

(50)

Nonlinear Dynamics 30 Part 4: Canonical Perturbation Theory

First-order perturbation theory: sextupole example

We shall choose values k2` = 100 m−2, and β(0) = 1 m, and

plot the “contours” in phase space obtained from:

x =
√

2βJ cosφ, p = −
√

2J

β
sinφ, (51)

for 0 < φ < 2π, and for a set of values of J1.

The phase space depends on the tune, ν.

For a range of values of the tune, we shall compare the phase

space plot obtained from perturbation theory, with the plots

obtained by “tracking” particles, applying sextupole “kicks”

with a phase advance between one kick and the next.

Nonlinear Dynamics 31 Part 4: Canonical Perturbation Theory



First-order perturbation theory: sextupole example

Blue lines show the results from perturbation theory.

Red lines show the results of tracking.
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First-order perturbation theory: sextupole example

Blue lines show the results from perturbation theory.

Red lines show the results of tracking.
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First-order perturbation theory: sextupole example

Blue lines show the results from perturbation theory.

Red lines show the results of tracking.
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First-order perturbation theory: sextupole example

Blue lines show the results from perturbation theory.

Red lines show the results of tracking.
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First-order perturbation theory: sextupole example

Blue lines show the results from perturbation theory.

Red lines show the results of tracking.
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First-order perturbation theory: sextupole example

There is some resemblance between the phase space plots

obtained from perturbation theory, and the plots obtained from

tracking: there is the same general kind of distortion, and

clearly dramatic effects close to the third integer resonance.

However, perturbation theory misses many of the details

revealed by tracking, and also some unphysical features: the

contours should not cross in the way they appear to do for

particular tunes.

We can hope that applying perturbation theory to progressively

higher order improves the situation... but that is beyond the

scope of this course.
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Motion near a resonance

To finish this lecture, we consider in a little more detail the

motion near a resonance.

If the tune is not close to a resonance, we can find a canonical

transformation to variables in which the Hamiltonian is purely a

function of the action:

H1 = H1(J1). (52)

We cannot use a generating function to remove terms from the

Hamiltonian independent of the angle variable, φ.

But such terms simply lead to a tune shift with amplitude,

which is fairly innocuous.

A tune shift with amplitude does not (in itself) distort the

phase space, nor does it limit the stability of the motion.
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Motion near a resonance

We also saw, from equation (20), that to remove a term

Ṽm cos(mφ) from the Hamiltonian, we need a term in the

generating function given by:

G =
1

2 sin(πmν)

∫ s+L

s
Ṽm sin

[
m
(
φ+ ψ(s′)− ψ(s)− πν

)]
ds′.

(53)

If mν approaches an integer value, the generating function

diverges, and we cannot hope for an accurate result. We saw

this in the sextupole (m = 3) example, above, where we started

seeing strange results close to ν = 1/3.

Generally, therefore, after applying perturbation theory, we are

left with a Hamiltonian of the form:

H1 = H0(J, s) + f(J, s) cos(mφ). (54)
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Motion near a resonance

Let us assume that, by making an s-dependent canonical

transformation, we can remove the s-dependence of the

Hamiltonian, and put it into the form:

H = H0(J) + f(J) cos(mφ). (55)

For the special case,

H =
J

β(s)
, (56)

the generating function:

F2 = φJ1 + J1 2πν
s

L
− J1

∫ s
0

ds′

β(s′)
, (57)

leads to the s-independent Hamiltonian:

H1 =
2πν

L
J1, (58)

where J1 = J.
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Motion near a resonance

Since, in the new variables, the Hamiltonian is independent of

s, the Hamiltonian gives us a constant of the motion. That is,

the trajectory of a particle in phase space must follow a

contour on which the value of H1 is constant.

As a specific example, consider the Hamiltonian:

H1 = 1.6J − 4J2 + J3 cos(6φ). (59)

This represents dynamics with a first-order tune shift (with

respect to J), and a sixth-order resonance driving term. We

can easily plot countours on which H1 is constant...
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Motion near a resonance
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Motion near a resonance

The phase space clearly resembles that constructed from
repeated application of a map representing a periodic section of
beam line near a sixth-order resonance. Although there is a
fundamental difference between the two cases (in one case the
Hamiltonian is time-dependent, and in the other case it is
time-independent) studying the “continuous” case can help in
understanding features of the “discrete” case.

The width of the islands is related to both the tune shift with
amplitude, and the strength of the driving term. Without a
resonance term, the islands would vanish.

The centres of the islands represent stable fixed points. There
are also unstable fixed points, where the contour lines appear
to cross.

The lines passing through the unstable fixed points divide the
islands from the rest of phase space: such a line is known as a
separatrix.
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Motion near a resonance

It is possible to carry the analysis of resonant systems much

further. In particular, it is possible to derive expressions for

such things as the widths of the islands, in terms of the tune

shifts with amplitude, and the strength of the resonant driving

term. For more information, see Ruth.

In general, there will be more than one resonance present in a

system. For example, sextupoles in a lattice can combine to

drive resonances of any order. Perturbation theory can help to

reveal the strengths of the driving terms of the different

resonances.

The onset of chaotic motion can be associated with two sets of

resonant islands that overlap. This condition for chaotic

motion is known as the Chirikov criterion.
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Illustrating resonances: frequency map analysis

In two degrees of freedom, a resonance is specified by integers

(m,n) for which the following condition is satisfied:

mνx + nνy = `, (60)

where ` is an integer.

Frequency map analysis is a technique that uses the results

from tracking simulations to indicate the strengths of different

resonances: not all resonances may be harmful.
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The Kolmogorov-Arnold-Moser Theorem (1954-1963)

“The KAM theorem states that if [an integrable Hamiltonian]

system is subjected to a weak nonlinear perturbation, some of

the invariant tori are deformed and survive, while others are

destroyed. The ones that survive are those that have

‘sufficiently irrational’ frequencies (this is known as the

non-resonance condition). This implies that the motion

continues to be quasiperiodic, with the independent periods

changed... The KAM theorem specifies quantitatively what

level of perturbation can be applied for this to be true. An

important consequence of the KAM theorem is that for a large

set of initial conditions the motion remains perpetually

quasiperiodic.”

Wikipedia.
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Summary

In applying perturbation theory, we construct a canonical

transformation that puts the Hamiltonian into as simple a form

as possible.

The dynamics in the new Hamiltonian are (in principle) simpler

to solve. Then, the dynamics with the original Hamiltonian are

obtained from the relationship between the old and new

variables, defined by the canonical transformation.

Terms purely dependent on J cannot be removed from the

Hamiltonian; nor can resonant terms, such as cosmφ, if the

tune is close to a resonance, i.e. if mν is close to an integer.

Some of the significant features of dynamics near a resonance

can be understood in terms of a Hamiltonian in which

non-resonant terms have been removed (by applying

perturbation theory).
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Further reading

Much of the material in this lecture follows closely the report

by Ruth:

R. Ruth, “Single particle dynamics in circular accelerators,”

SLAC-PUB-4103 (1986).

http://www.slac.stanford.edu/pubs/slacpubs/4000/slac-pub-4103.html

This report gives a very clear explanation of the subject. It also

goes some way beyond the material in this lecture, with some

discussion on Hamilton-Jacobi theory, and the Chirikov criterion

for the onset of chaotic motion.
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Exercise

Apply perturbation theory to an octupole perturbation. Hence,

find the tune shift with amplitude generated by an octupole.
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