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Nonlinear Single-Particle Dynamics in High Energy Accelerators

There are six lectures in this course on nonlinear dynamics:

1. First example: nonlinear dynamics in a bunch compressor

2. Second example: nonlinear dynamics in storage rings

3. Hamiltonian mechanics

4. Canonical perturbation theory

5. Lie transformations

6. Symplectic integrators
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Second example: nonlinear dynamics a simple storage ring

As a second example of nonlinear dynamics in accelerator

systems, let us consider the transverse dynamics in a simple

storage ring.

We shall assume that:

• The storage ring is constructed from some number of

identical cells consisting of dipoles, quadrupoles and

sextupoles.

• The phase advance per cell can be tuned from close to

zero, up to about 0.5×2π.

• There is one sextupole per cell, which is located at a point

where the horizontal beta function is 1 m, and the alpha

function is zero.

Usually, a storage ring will contain two sextupoles per cell, to

correct horizontal and vertical chromaticity. To keep things

simple, we will use only one sextupole per cell.
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Storage ring: linear dynamics

The chromaticity, and hence the sextupole strength, will

normally be a function of the phase advance. However, just to

investigate the system, let us keep a fixed sextupole strength

k2L, and see what happens as we adjust the phase advance.

We can assume that the map from one sextupole to the next is

linear, and corresponds to a rotation in phase space through an

angle given by the phase advance µx.

With the sextupole strength set to zero, the transfer map for a

single cell can be written:(
x
px

)
s0+Lcell

=

(
cosµx sinµx
− sinµx cosµx

)(
x
px

)
s0

. (1)

To keep things simple, we shall consider only horizontal motion,

and assume that the vertical coordinate y = 0 throughout.
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Effect of a sextupole kick

The change in the horizontal momentum of a particle moving

through the sextupole is found by integrating the Lorentz force:

∆px = −
∫ L

0

By

Bρ
ds. (2)

The sextupole strength k2 is defined by:

k2 =
1

Bρ

∂2By

∂x2
, (3)

where Bρ is the beam rigidity. For a pure sextupole field

(assuming that the vertical coordinate y = 0),

By

Bρ
=

1

2
k2x

2. (4)

If the sextupole is short, then we can neglect the small change

in the coordinate x as the particle moves through the

sextupole, in which case:

∆px ≈ −
1

2
k2Lx

2. (5)
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Effect of a sextupole kick

The transfer map for a particle moving through a short

sextupole can be represented by a “kick” in the horizontal

momentum:

x1 = x0 (6)

px1 = px0 −
1

2
k2Lx

2
0. (7)

We shall choose a fixed value k2L = −600 m−3, and look at the

effect of the maps for different phase advances.
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Phase space portraits

We examine the effect of the map in a given case by plotting

the phase space co-ordinates after repeated action of the map

(equation (1), followed by (6) and (7)) for a range of initial

conditions.

The resulting plot is known as a phase space portrait.

We look first at the phase space portraits for a range of phase

advances from 0.2× 2π to 0.5× 2π...
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Phase space portraits for a storage ring with sextupoles

µx = 0.202× 2π
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Phase space portraits for a storage ring with sextupoles

µx = 0.252× 2π
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Phase space portraits for a storage ring with sextupoles

µx = 0.330× 2π
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Phase space portraits for a storage ring with sextupoles

µx = 0.402× 2π
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Phase space portraits for a storage ring with sextupoles

µx = 0.490× 2π

Nonlinear Dynamics in Accelerators 11 Part 2: Storage Rings



Features of nonlinear dynamics in storage rings

There are some interesting features in these phase space portraits to which
it is worth drawing attention:

• For small amplitudes (small x and px), particles map out closed loops
around the origin: this is what we expect for a purely linear map.

• As the amplitude is increased, there appear “islands” in phase space:
the phase advance (for the linear map) is generally close to one divided
by the number of islands.

• Sometimes, a larger number of islands appears at larger amplitude.

• Usually, there is a closed curve that divides a region of stable motion
from a region of unstable motion. Outside that curve, the amplitude of
particles increases without limit as the map is repeatedly applied.

• The area of the stable region depends strongly on the phase advance:
for a phase advance close to 2π/3, it appears that the stable region
almost vanishes altogether.

• It appears that as the phase advance is increased towards π, the stable
area becomes large, and distortions from the linear ellipse become less
evident.
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Resonances

We see already that the effect of the sextupole in the lattice

depends strongly on the (linear) phase advance across a single

periodic cell.

In the language of beam dynamics, a phase advance of 2πm/n,

where m/n is an irreducible fraction, is said to be an “nth order

resonance”.

Much of the rest of this course will be devoted to developing

an understanding of the various phenomena that we have

observed in this example, including resonances.

As a first step, we can consider some simple special cases...
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Effect of a steering error in a storage ring

Consider what happens if, instead of the sextupole, we have a

small dipole (steering) error (of strength k0L) at one point in

each cell.

The transfer map representing the dipole error is:

x1 = x0, (8)

px1 = px0 − k0L. (9)
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Steering error in a storage ring: integer phase advance

Suppose that the phase advance from a given point in one cell

to the corresponding point in the next cell is exactly 2π.

After applying the transfer map for the dipole error and then

the map for one periodic cell, the phase space co-ordinates

become:

x2 = x1 = x0, (10)

px2 = px1 = px0 − k0L. (11)

Then applying the next steering error:

x3 = x2 = x0, (12)

px3 = px2 − k0L = px0 − 2k0L. (13)

The steering errors add coherently. As a result, the motion of

particles in the ring will be unstable.
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Steering error in a storage ring: half-integer phase advance

Now suppose that the phase advance from a given point in one

cell to the corresponding point in the next cell is exactly π.

After applying the transfer map for the dipole error and then

the map for one periodic cell, the phase space co-ordinates

become:

x2 = −x1 = −x0, (14)

px2 = −px1 = −px0 + k0L. (15)

Then applying the next dipole error:

x3 = x2 = −x0, (16)

px3 = px2 − k0L = −px0. (17)

The dipole errors cancel out exactly. As a result, the motion of

particles in the ring will be stable.
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Steering error in a storage ring

We can understand how the effect of a dipole error depends on

the phase advance by representing the effect of successive

dipole kicks on a particle in phase space:

To minimise the effect of steering errors in a storage ring, it is

best to choose values for the tunes close to half-integers...
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Effect of a focusing error in a storage ring

...but unfortunately, a half-integer is the worst value for the

tune in the presence of focusing errors.

Consider a periodic lattice in which there is a quadrupole

(focusing) error at a given point in each cell.

The transfer map for the focusing error is:

x1 = x0, (18)

px1 = px0 − k1Lx0. (19)
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Focusing error in a storage ring: half-integer phase advance

Now suppose that the phase advance from a given point in one

cell to the corresponding point in the next cell is exactly π

(i.e. the tune is a half-integer).

After applying the transfer map for a quadrupole error and then

the map for one periodic cell, the phase space co-ordinates

become:

x2 = −x1 = −x0, (20)

px2 = −px1 = −px0 + k1Lx0. (21)

Then applying the next quadrupole error:

x3 = x2 = −x0, (22)

px3 = px2 − k1Lx2 = −px0 + 2k1Lx0. (23)

The quadrupole errors add coherently. As a result, the motion

of particles in the ring will be unstable.
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Effect of a focusing error

Again, we can understand how the effect of a quadrupole error
depends on the phase advance by representing the effect of
successive quadrupole kicks on a particle in phase space:

To minimise the effect of steering errors in a storage ring we
need to avoid tunes close to integer values; and to minimise
the effect of focusing errors, we need to avoid tunes close to
half-integer values.
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Effect of a sextupole perturbation

In the case of a sextupole perturbation, it is less clear from a

simple picture of the kicks in phase space what the effects of

the perturbation will be:

We might guess that the dynamics will be unstable if the

(horizontal) tune is close to a third-integer resonance. Can we

show this mathematically?
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Effect of a sextupole perturbation

For analysis of sextupole (and higher-order multipole) effects, it
is convenient to use action–angle variables, defined by:

2Jx = γxx
2 + 2αxxpx + βxp

2
x, (24)

tan(φx) = −βx
px

x
− αx, (25)

where αx, βx and γx are the Courant–Snyder parameters.

A particle performing linear motion in an accelerator traces out
an ellipse in phase space with area πJx.

The position around the ellipse is given by the angle variable φx.

In terms of the action Jx and angle φx, the co-ordinate and
transverse momentum of a particle are given by:

x =
√

2βxJx cos(φx), (26)

px = −
√

2Jx
βx

[
sin(φx) + αx cos(φx)

]
. (27)
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Effect of a sextupole perturbation

When a particle passes through a sextupole, it receives a

momentum kick:

∆px = −
1

2
k2Lx

2. (28)

Assuming that αx is small at the sextupole location, we find

that the corresponding change in the action is:

∆Jx ≈ −
1

2
k2Lβxx

2px =
1

8
k2L(2βxJx)

3
2
[

sin(φx) + sin(3φx)
]
. (29)

The change in φx from a location s0 in a beamline to a location

s1 is simply equal to the phase advance from s0 to s1.

We see that if each periodic cell has the same sextupole

perturbation, then the sextupole kicks will add coherently if the

cell tune is an integer or a third-integer.
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Effects of multipole perturbations

The arguments used for a sextupole generalise to higher-order

multipoles.

We find that resonances can occur, driven by individual

multipoles or combinations of multipoles, when the tunes νx
and νy for a periodic lattice satisfy:

mxνx +myνy = n, (30)

for integers mx, my and n.

The resonance condition (30) can be represented by sets of

lines in tune space...
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The resonance diagram

The value of |mx|+ |my| gives the order of the resonance.

Any point in tune space will be near a resonance of some order.

However, it is usually the case that the higher the order of the

resonance, the less dangerous the resonance tends to be for the

stability of the dynamics.
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Dynamic aperture

It is usually the case that particles with small betatron

amplitudes (i.e. small values of the horizontal action Jx and

vertical actionJy) will have stable trajectories in a storage ring;

but if the betatron amplitude is larger than some limit, then

the trajectory will become unstable.

The range of co-ordinates corresponding to stable trajectories

in a storage ring is often called the dynamic aperture.

The dynamic aperture is an important quantity for injection

and beam lifetime: if the dynamic aperture is very small

(because of a poor choice of tunes, or because of large

perturbations in the lattice) then injection efficiency will be

very poor, and the beam lifetime will be very short.

The dynamic aperture depends on the energy deviation as well

as on the distribution of multipoles around the lattice.
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Frequency map analysis of particle dynamics in the ALS

C. Steier et al., EPAC 2000, 1077.
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Dynamic aperture

The dynamic aperture for a given lattice design is generally

computed by long-term tracking, i.e. tracking particles around

the ring for thousands or tens of thousands of turns.

Particles that survive over some specified number of turns are

said to be within the dynamic aperture of the lattice.

Further analysis of the tracking data, using a technique known

as frequency map analysis can reveal the resonances that may

be limiting the dynamic aperture.
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Dynamic aperture in SPEAR3

J. Corbett et al., PAC 1999, 2364.

The lines show the dynamic aperture in SPEAR3 for different

seeds of random multipole errors in the lattice. Solid lines are

for zero energy deviation, dashed lines for 3% energy deviation.
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Summary

• The nonlinear dynamics in a storage ring depend on the tunes of the
storage ring, as well as on the distribution of higher-order multipoles in
the lattice.

• A particular working point in tune space can be good for suppressing
the effects of some multipole perturbations, but can enhance the
effects of others.

• Resonances occur when multipole kicks add coherently over many
turns. On a resonance, the tunes satisfy the condition:

mxνx +myνy = n, (31)

for integers mx, my and n. A good working point in tune space should
avoid low-order resonances.

• The range of betatron amplitudes for which particle trajectories are
stable is known as the dynamic aperture.

• The dynamic aperture in a storage ring depends on the working point in
tune space, on the distribution of multipole errors around the ring, and
on the energy deviation.

• A large dynamic aperture is needed for good injection efficiency in a
storage ring, and good beam lifetime. Optimising the dynamic aperture
is an important step in the lattice design process for a storage ring.
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Exercises

1. Using Matlab, Scilab, or some other scientific software, write a program
to construct the phase space portraits shown in slides 8 – 12. How are
the phase space portraits changed if the beta function is different from
unity? Make a plot of the largest stable orbit amplitude as a function of
linear phase advance.

2. Consider a storage ring constructed from repeated unit cells, with a
transverse phase advance of π across each cell. If there is a small
focusing error k1L at the same location in each cell, where the beta
function is 1 m, write down the phase space co-ordinates after passing
through N cells, starting (immediately after one focusing error) with
x = x0 and px = 0.

3. Using the same arguments that were used for a sextupole, show that an
octupole perturbation in a periodic lattice will drive resonances when
the tune is equal to an integer, a half-integer, or a quarter-integer.
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