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First Example: Nonlinear dynamics in a bunch compressor

Nonlinear Single-Particle Dynamics in High Energy Accelerators

There are six lectures in this course on nonlinear dynamics:

1. First example: nonlinear dynamics in a bunch compressor

2. Second example: nonlinear dynamics in storage rings

3. Hamiltonian mechanics

4. Canonical perturbation theory

5. Lie transformations

6. Symplectic integrators
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Objectives of the Course

By the end of the course, you should be able to:

• explain the impact of nonlinear dynamics on beam

behaviour in some simple accelerator systems;

• write the Hamiltonian for standard nonlinear components

such as sextupole magnets, and use the Hamiltonian to

derive the equations of motion for particles in those

components;

• explain how canonical perturbation theory can be applied to

understand features of nonlinear dynamical systems;

• explain how nonlinear transfer maps can be represented in

different forms, including power series, mixed-variable

generating functions, and Lie transformations;

• use the appropriate tools from Hamiltonian mechanics to

construct symplectic integrators for standard nonlinear

components.
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Introduction – some examples of nonlinear dynamics

In this lecture, we shall discuss a first example of nonlinear

single-particle dynamics in an accelerator system.

In particular, we shall carry out an analysis of the longitudinal

dynamics in a bunch compressor.

By the end of the lecture, you should be able to describe the

source of nonlinearities in a bunch compressor, and the

(potential) limitations imposed by the nonlinearities.
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Bunch compressor: structure and operation

A bunch compressor is a system that reduces the length of a

bunch by performing a rotation in longitudinal phase space.

Such systems are used, for example, in free electron lasers, to

increase the peak current in a bunch.

We shall work through this example in some detail, almost as a

case study, following these steps:

1. Outline of structure and operation of a bunch compressor.

2. Specification of parameters based on linear dynamics.

3. Analysis of linear and nonlinear effects.

4. Modification of parameters to compensate nonlinear effects.
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Bunch compressor: structure and operation
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Dynamical variables

We define dynamical variables to describe the behaviour of

individual particles as they travel along the beamline.

The energy deviation δ is the “energy error” of a particle with

respect to a specified reference energy, E0:

δ =
E − E0

E0
. (1)

The other dynamical variable, z, is the distance that a particle

is ahead of a nominal reference particle.
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Dynamical variables: longitudinal co-ordinate

The rf cavity is designed to “chirp” the bunch, i.e. to provide a

change in energy deviation as a function of longitudinal

position within the bunch.

For ultrarelativistic particles, the dynamical map for the rf

cavity in the bunch compressor is:

z1 = z0, (2)

δ1 = δ0 −
eV

E0
sin

(
ωz0

c

)
, (3)

where V is the rf voltage, and ω is 2π times the rf frequency.
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Bunch compressor: structure and operation

The chicane does not change the energy of the particles
(neglecting synchrotron radiation). However, the path length L

depends on the energy of the particle.

If we assume that the bending angle in a dipole is small, θ � 1:

L =
2L1

cos θ
+ L2. (4)

The bending angle is a function of the energy of the particle:

θ =
θ0

1 + δ
. (5)
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Bunch compressor: structure and operation

The complete map for the bunch compressor can be written as

a map for the rf cavity (2), (3):

z1 = z0,

δ1 = δ0 −
eV

E0
sin

(
ωz0

c

)
,

followed by a map for the chicane:

z3 = z1 + 2L1

(
1

cos θ0
−

1

cos θ

)
, (6)

δ3 = δ1, (7)

where θ0 is the nominal bending angle of each dipole in the

chicane, and θ is given by (5):

θ =
θ0

1 + δ1
.

Clearly, the map is nonlinear. The question is: how important

are the nonlinear terms?
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Bunch compressor: linear dynamics

To understand the effect of the nonlinear part of the map, we

shall look at a specific example.

First, we will “design” a bunch compressor using only the linear

part of the map, i.e. by completely ignoring the nonlinear terms.

Then, we shall see how our design has to be modified to take

account of the nonlinearities.
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Bunch compressor: linear dynamics

To first order in the dynamical variables z and δ, the map for

the bunch compressor can be written:

z1 = z0, (8)

δ1 = δ0 −
eV

E0

ω

c
z0, (9)

followed by:

z3 = z1 + 2L1
θ0 sin θ0

cos2 θ0
δ1, (10)

δ3 = δ1. (11)
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Bunch compressor: linear dynamics

In a linear approximation, the maps for the rf cavity and the

chicane may be represented as matrices:

Rrf =

(
1 0
−a 1

)
, Rch =

(
1 b
0 1

)
, (12)

where:

a =
eV

E0

ω

c
, and b = 2L1

θ0 sin θ0

cos2 θ0
. (13)

The matrix representing the total map for the bunch

compressor, Rbc, is then:

Rbc = RchRrf =

(
1− ab b
−a 1

)
. (14)

The map is applied by multiplying the phase space vector by

the matrix Rbc: (
z
δ

)
s=s3

= Rbc

(
z
δ

)
s=s0

. (15)

Nonlinear Dynamics in Accelerators 13 Part 1: A Bunch Compressor



Symplecticity

We note in passing that the linear part of the map is symplectic.

A linear map is symplectic if the matrix R representing the map is
symplectic, i.e. satisfies:

RTSR = S, (16)

where, in one degree of freedom (i.e. two dynamical variables), S is the
matrix:

S =

(
0 1
−1 0

)
. (17)

In more degrees of freedom, S is constructed by repeating the 2× 2 matrix
above on the block diagonal, as often as necessary.

In one degree of freedom, it is a necessary and sufficient condition for a
matrix to be symplectic, that it has unit determinant: but this condition
does not generalise to more degrees of freedom.

We shall consider what it means to say that a nonlinear map is symplectic
later in this course.
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Bunch compressor: linear dynamics

Now we proceed to derive expressions for the required values of

the parameters a and b, in terms of the desired initial and final

bunch length and energy spread.

We construct the beam distribution sigma matrix by taking the

outer product of the phase space vector for each particle, then

averaging over all particles in the bunch:

Σ = 〈~z ~zT〉 =

(
〈z2〉 〈zδ〉
〈zδ〉 〈δ2〉

)
. (18)

The transformation of Σ under the linear map represented by

the matrix Rbc is given by:

Σs3 = Rbc Σs0 R
T
bc. (19)
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Bunch compressor: linear dynamics

Usually, a bunch compressor is designed so that the correlation

〈zδ〉 = 0 at the start and end of the compressor.

In that case, using (14) and (19) we find that the parameters a

and b must satisfy:

(1− ab)
a

b
=
〈δ2〉s0

〈z2〉s0

(20)

where the subscript s0 indicates that the average is taken over

the values of the dynamical variables at s = s0.

Given the constraint (20), the compression factor r is given by:

r2 ≡
〈z2〉s3

〈z2〉s0

= 1− ab. (21)
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Bunch compressor: linear dynamics

As a specific example, consider a bunch compressor for the

International Linear Collider:

Initial rms bunch length
√
〈z2〉s0 6 mm

Initial rms energy spread
√
〈δ2〉s0 1.5× 10−3

Final rms bunch length
√
〈z2〉s3 0.3 mm

Solving equations (20) and (21) with the above values for rms

bunch lengths and energy spread, we find:

a = 4.9937 m−1, and b = 0.19975 m. (22)
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Bunch compressor: linear dynamics

We can illustrate the effect of the linearised bunch compressor

map on phase space using a “window frame” distribution:

The bunch compressor rotates the distribution in phase space

by (nearly) 90◦.
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Bunch compressor: linear dynamics

The rms bunch length is reduced by a factor of 20; at the same

time, the rms energy spread is increased by the same factor.

Because the map is symplectic, phase space areas are

conserved under the transformation.

Also, because the map is linear, straight lines in phase space

remain straight.
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Bunch compressor: nonlinear dynamics

Now let us see what happens when we apply the full nonlinear

map for the bunch compressor to a distribution of particles.

The full map cannot simply be represented by the two

parameters a and b: we need to make some assumptions for

other parameters, in particular for the rf voltage and frequency,

and the dipole bending angle and chicane length.

We have to choose these parameters so that the “linear”

parameters have the appropriate values. Fortunately, this is not

difficult.
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Bunch compressor: nonlinear dynamics

Suitable values for the various parameters are as follows:

Beam (reference) energy E0 5 GeV
RF frequency frf 1.3 GHz
RF voltage Vrf 916 MV
Dipole bending angle θ0 3◦

Dipole spacing L1 36.3 m

It appears that we need a lot of rf voltage; the design is still

feasible, though expensive.

Let us see what happens to the dynamics when we use these

parameters...
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Bunch compressor: nonlinear dynamics

As before, we illustrate the effect of the bunch compressor map

on phase space using a “window frame” distribution:

The map has approximately the effect we desire: the bunch

length has been reduced (and the distribution rotated by

approximately 90◦).
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Bunch compressor: nonlinear dynamics

However, there is significant distortion of the distribution.

Because of the nonlinear terms in the map, straight lines do

not stay straight.

The rms bunch length will be significantly longer than we are

aiming for.
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Bunch compressor: nonlinear dynamics

Whether or not the nonlinear effects can be tolerated will

depend on the application. In the case of ILC, the phase space

distortion introduced by a bunch compressor with the above

parameters would lead to a significant loss of luminosity. We

have to do something about it... but what?

If we inspect the phase space plots, then it seems that the

damage is done by a second-order term in the map for the

chicane, i.e. by a dependence of a change in z on the square of

the energy deviation δ: such a term is a possible cause of the

“parabolic” disortion that we see in the final phase space plot.

Assuming that our conjecture is correct, we could try to fix the

distortion by modifying the map for the rf...
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Bunch compressor: nonlinear dynamics

Consider a particle entering the bunch compressor with initial

phase space co-ordinates z0 and δ0.

We can write the co-ordinates z1 and δ1 of the particle after

the rf cavity to second order in z0 and δ0:

z1 = z0, (23)

δ1 = δ0 + (Rrf)65z0 + (Trf)655z
2
0. (24)

(Rrf)65 refers to a particular element of the matrix Rrf.

The notation makes sense if we consider that in three degrees

of freedom, the elements of the phase space vector are the

variables x, px, y, py, z and δ.

Thus, δ and z are the 6th and 5th elements (respectively) of the

phase space vector.
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Bunch compressor: nonlinear dynamics

By convention, coefficients of linear terms are denoted Rij,

coefficients of second-order terms are denoted Tijk, third-order

terms Uijkl and so on:

xi(s1) =
∑
j

Rijxj(s0)

+
∑
j,k

Tijkxj(s0)xk(s0)

+
∑
j,k,l

Uijklxj(s0)xk(s0)xl(s0) . . .
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Bunch compressor: nonlinear dynamics

The co-ordinates of the particle after the chicane are then

(again to second order):

z3 = z1 + (Rch)56δ1 + (Tch)566δ
2
1, (25)

δ3 = δ1. (26)

In the present case, to simplify the notation we can drop the

subscripts “rf” and “ch”: since the maps for the rf cavity and

the chicane involve different elements of the matrices Rrf and

Rch (and Trf and Tch), there is no ambiguity.
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Bunch compressor: nonlinear dynamics

If we combine the maps for the rf and the chicane, we get:

z3 = (1 +R56R65)z0 +R56δ0

+(R56T655 +R2
65T566)z2

0

+2R65T566z0δ0

+T566δ
2
0, (27)

δ3 = δ0 +R65z0 + T655z
2
0. (28)

The term that gives the strong nonlinear distortion is the term

in z2
0 in (27). If we can design a system such that the

appropriate coefficients satisfy:

R56T655 +R2
65T566 = 0, (29)

then we should be able to reduce the distortion.
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Bunch compressor: nonlinear dynamics

The values of R56 = b and R65 = −a are determined by the

requirements for the compression factor.

The value of T566 is determined by the chicane; in fact, we find

for θ0 � 1 (see Exercise 3):

T566 ≈ −3L1θ
2
0 ≈ −

3

2
R56. (30)

Our only degree of freedom is with the coefficient T655: this is

the second-order dependence of the energy deviation on

longitudinal position for a particle passing through the rf cavity.

Unfortunately, if we inspect the full rf map (3), we find it

contains only odd-order terms, so T655 = 0. However...
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Bunch compressor: nonlinear dynamics

...we can operate the rf cavity off-phase. Then, the rf map
becomes:

z1 = z0, (31)

δ1 = δ0 −
eV

E0
sin

(
ωz0

c
+ φ0

)
. (32)

The first-order coefficient in the map for δ is then:

R65 = −
eV

E0

ω

c
cosφ0. (33)

The second-order coefficient is:

T655 =
1

2

eV

E0

(
ω

c

)2
sinφ0. (34)

Note that there is also a zeroth-order term, so the bunch ends
up with a non-zero mean energy deviation 〈δ〉 after the rf
cavity; but we can take this into account simply by an
appropriate scaling of the field in the chicane.
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Bunch compressor: nonlinear dynamics

The map for the ILC bunch compressor now has the following

coefficients.

The linear coefficients are determined by the required

compression factor, and the requirement to have no final

correlation 〈zδ〉:

R65 = −4.9937 m−1, and R56 = 0.19975 m. (35)

The value of T566 is determined by the R56 of the chicane:

T566 = −
3

2
R56 = −0.29963 m. (36)

And the value of T655 is determined by the desire to correct the

second-order distortion of the phase space:

R56T655 +R2
65T566 = 0 ∴ T655 = 37.406 m−2. (37)
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Bunch compressor: nonlinear dynamics

Now, given:

R65 = −
eV

E0

ω

c
cosφ0 = −4.9937 m−1, (38)

and:

T655 =
1

2

eV

E0

(
ω

c

)2
sinφ0 = 37.406 m−2, (39)

we find, for E0 = 5 GeV and ω = 1.3 GHz:

V = 1,046 MV, and φ0 = 28.8◦. (40)

Operating with this phase, we are providing over a gigavolt of
rf to decelerate the beam by more than 500 MV.

Because of adiabatic (anti)damping, we will need to reduce the
R56 of the chicane by a factor E1/E0, where E0 and E1 are the
mean bunch energy before and after the rf, respectively.

Also, the phase space area occupied by the distribution will be
increased by a factor E0/E1.
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Bunch compressor: nonlinear dynamics

As usual, we illustrate the effect of the bunch compressor on

phase space using a “window frame” distribution.

Using the latest set of parameters, we find the following:

This looks much better: the dominant distortion now appears

to be third-order, and looks small enough that it may not

significantly affect the performance of the collider (although

this would need to be checked by more detailed studies).
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Bunch compressor: some conclusions

We have already learned some important lessons from this

example:

• Ignoring nonlinear effects can get you into trouble.

Sometimes you can get away with it; other times, a system

designed without taking into account nonlinearities will not

achieve the specified performance.

• If we take the trouble to analyse and understand the

nonlinear behaviour of a system, then, if we are lucky

enough and clever enough, we may be able to devise a

means of compensating any adverse effects.
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Exercises

1. Derive the expressions for the parameters a and b given in

equation (13).

2. Show that the transfer matrix Rbc given in (14) obeys the

symplectic condition (16) for any values of the parameters

a and b.

3. Show that for a chicane constructed from four dipoles, the

Taylor map coefficients R56 and T566 are related by:

T566 = −
3

2
R56.

4. Show that the transfer map for a bunch compressor

(including RF and chicane) is given (to second order in the

dynamical variables) by equations (27) and (28).
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