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What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the

motion of a particle through an electromagnetic field, with

dynamical variables appropriate for a particle accelerator. For

particles close to the reference trajectory, and with energy close

to the reference energy, the values of the dynamical variables

are expected to remain small as the particle moves through the

accelerator.

Since the dynamical variables take small values, we can make

approximations to the Hamiltonian to construct linear maps.

We saw how this could be applied to the map for a field-free

region (a drift space).

So far we have assumed that the reference trajectory is a

straight line.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate

system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we shall see how to modify the Hamiltonian to

deal with cases where the reference trajectory is curved. This

will allow us to deal with dipole magnets, where all particles

follow curved paths.

Using a curved reference trajectory in dipole magnets allows us

to maintain small values for the dynamical variables, even

where the deflection from the dipole is large. This means we

can continue to use series expansion approximations for the

Hamiltonian in such cases.

Ultimately, we shall derive the linear transfer map (transfer

matrix) for a dipole.
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Curved Reference Trajectories

Old coordinates are (x, y, z); new coordinates are (X,Y, S):

x = (ρ+X) cos
S

ρ
− ρ (1)

y = Y (2)

z = (ρ+X) sin
S

ρ
(3)
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Curved Reference Trajectories

We can construct a generating function to find the conjugate

momenta in the new coordinate system:

F3(X, px, Y, py, S, pz) = −

[

(ρ+X) cos
S

ρ
− ρ

]

px−Y py−

[

(ρ+X) sin
S

ρ

]

pz

(4)

The old and new coordinates and momenta are related by:

xi = −
∂F3

∂pi
Pi = −

∂F3

∂Xi
(5)

The coordinates transform as required:

x = (ρ+X) cos
S

ρ
− ρ (6)

y = Y (7)

z = (ρ+X) sin
S

ρ
(8)
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Curved Reference Trajectories

The new transverse momenta are given by:

PX = px cos
S

ρ
+ pz sin

S

ρ
(9)

PY = py (10)
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Curved Reference Trajectories

The curvature of the trajectory has a surprising effect on the

longitudinal component of the momentum: PS is not just the

tangential component of the momentum in Cartesian

coordinates!

PS = pz

(

1+
X

ρ

)

cos
S

ρ
− px

(

1+
X

ρ

)

sin
S

ρ
(11)

To complete the transformation, we also need to express the

components of the vector potential in the new coordinate

system:

AX = Ax cos
S

ρ
−Az sin

S

ρ
(12)

AY = Ay (13)

AS = Az cos
S

ρ
+Ax sin

S

ρ
(14)
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The Hamiltonian in a Curved Reference Trajectory

Recall the general form for the Hamiltonian for a relativistic

particle in Cartesian coordinates, in an electromagnetic field:

H =
√

(p− qA)2 c2 +m2c4 + qφ (15)

The transformation into “accelerator variables” in a curvilinear

coordinate system follows exactly the same lines as the

transformations in a straight coordinate system. The only

difference is that when we change the independent variable

from t to s (and switch the Hamiltonian from H to −PS), we

pick up a factor 1 + x/ρ from equation (14).
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The Hamiltonian in a Curved Reference Trajectory

The result – our final “Accelerator Hamiltonian” – is:

H = − (1 + hx)

√

√

√

√

(

1

β0
+ δ −

qφ

P0c

)2

− (px − ax)
2
− (py − ay)

2
−

1

β2
0γ

2
0

− (1 + hx) as +
δ

β0
(16)

where we have (as usual) renamed our variables so as to tidy

up the notation; and we have defined the “curvature”:

h =
1

ρ
(17)

Note that, from the figures shown in the previous slides, the

curvature h is positive for a bend moving towards the negative

x direction. This is simply a convention.

We are now in a position to write down the equations of

motion, with a curved reference trajectory, for a relativistic

particle moving through any field for which we know the

potentials φ and a.
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Electromagnetic Fields

Before writing down and solving the equations of motion for a

particle travelling through various kinds of magnet, RF cavity

etc., we should know something about the fields generated by

these devices.

Recall that the fields are the derivatives of the potentials:

E = −∇φ−
∂A

∂t
(18)

B = ∇×A (19)

Allowed physical fields must be solutions of Maxwell’s

equations...
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Electromagnetic Fields

James Clerk Maxwell, 1831-1879

∇ ·D = ρ ∇ ·B = 0

∇×H−
∂D

∂t
= J ∇× E+

∂B

∂t
= 0 (20)

D = εE B = µH
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Magnetic Multipole Fields

Finding solutions to Maxwell’s equations for a given set of

boundary conditions is in general no easy task. Significant

effort has been devoted to developing computer codes to solve

this problem accurately and efficiently. Such codes have many

important applications in accelerator physics.

Fortunately, for linear beam dynamics, we are interested in a

few simple cases. In particular, we note that we can write the

field in a “long straight multipole” magnet as:

By + iBx =
∞
∑

n=1

(bn + ian)

(

x+ iy

r0

)n−1

(21)

where bn and an are arbitrary coefficients (chosen to give the

correct field map), and r0 is an arbitrary “reference radius”. It

is readily shown that the field of (21) satisfies Maxwell’s

equations (20).
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Magnetic Multipole Fields

The magnetic multipole field expansion is:

By + iBx =
∞
∑

n=1

(bn + ian)

(

x+ iy

r0

)n−1

(22)

The “multipole components” are indexed by the value of n: so

n = 1 is a dipole; n = 2 is a quadrupole; n = 3 is a sextupole,

etc.

An ideal multipole has coefficients an and bn equal to zero, for

all except one value of n.

A “normal multipole” has an = 0 for all values of n; a “skew”

multipole has bn = 0 for all values of n.
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Normal and Skew Dipole Fields

Normal dipole Skew dipole

Bx = 0, By = b1. Bx = a1, By = 0.
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Normal and Skew Dipole Fields

Dipole magnet being installed in the Australian synchrotron.
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Normal and Skew Quadrupole Fields

Normal quadrupole Skew quadrupole

Bx = b2
y
r0
, By = b2

x
r0
. Bx = a2

x
r0
, By = −a2

y
r0
.
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Normal and Skew Quadrupole Fields

Quadrupole magnets (from IHEP, Beijing, China) awaiting

installation in ATF2 (KEK, Tsukuba, Japan).
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Normal and Skew Sextupole Fields

Normal sextupole Skew sextupole

Bx = 2b3
xy
r20
, By = b3

x2−y2

r20
. Bx = a3

x2−y2

r20
, By = −2a3

xy
r20
.
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Normal and Skew Sextupole Fields

Sextupole magnet from the ATF (KEK, Tsukuba, Japan).
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Magnetic Vector Potential for Multipole Fields

Let us write down the magnetic vector potential:

Ax = 0, Ay = 0, Az = −<

∞
∑

n=1

(bn + ian)
(x+ iy)n

nrn−1
0

(23)

We find from the standard relation between the magnetic field

and the vector potential:

B = ∇×A (24)

that the potential (23) gives the magnetic multipole field (22):

By + iBx = −
∂Az

∂x
+ i

∂Az

∂y
=

∞
∑

n=1

(bn + ian)

(

x+ iy

r0

)n−1

(25)

Although there are many possible vector potentials that give

the same field (25) (and all give the same equations of

motion!) the particular choice (23), is convenient, because the

transverse components are zero, and there is no dependence on

the longitudinal coordinate.
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Magnetic Vector Potential for a Dipole Field

Let’s consider first the dipole field. This should be easy: it’s

just a uniform field perpendicular to the reference trajectory.

But there’s a catch...

... a dipole field will lead to a curved trajectory for the

reference particle. In other words, we will need to use a curved

reference trajectory, so when writing down the magnetic vector

potential A, we have to take into account the fact we are using

curvilinear coordinates.

Our vector potential should satisfy:

B = ∇×A (26)

with

Bx = 0, By = B0, Bs = 0 (27)
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Vector Calculus in Orthogonal Curvilinear Coordinates

In general curvilinear coordinates (q1, q2, q3), the curl of a vector

field can be written:

[∇×A]1 =
1

Q2Q3

(

∂

∂q2
Q3A3 −

∂

∂q3
Q2A2

)

(28)

[∇×A]2 =
1

Q3Q1

(

∂

∂q3
Q1A1 −

∂

∂q1
Q3A3

)

(29)

[∇×A]3 =
1

Q1Q2

(

∂

∂q1
Q2A2 −

∂

∂q2
Q1A1

)

(30)

where

Q2
i =

(

∂x

∂qi

)2

+

(

∂y

∂qi

)2

+

(

∂z

∂qi

)2

(31)
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Magnetic Vector Potential for a Dipole Field

In our coordinates (1), (2), (3), we find that the curl is given

by:

[∇×A]x =
∂As

∂y
−

1

(1 + hx)

∂Ay

∂s
(32)

[∇×A]y =
1

(1+ hx)

∂Ax

∂s
−

h

(1 + hx)
As −

∂As

∂x
(33)

[∇×A]s =
∂Ay

∂x
−

∂Ax

∂y
(34)

Using these expressions we find that the vector potential in our

curvilinear coordinates:

Ax = 0 Ay = 0 As = −B0

(

x−
hx2

2(1 + hx)

)

(35)

gives the magnetic field:

Bx = 0 By = B0 Bs = 0 (36)

as desired.
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Hamiltonian for a Dipole Field

Using the vector potential (35), and the general accelerator

Hamiltonian (16) we construct the Hamiltonian for a dipole:

H =
δ

β0
− (1 + hx)

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y −
1

β2
0γ

2
0

+(1+ hx) k0

(

x−
hx2

2(1 + hx)

)

(37)

Note that the normalised dipole field strength is given by:

k0 =
q

P0
B0 (38)

where q is the charge of the reference particle, and P0 is the

reference momentum.
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Hamiltonian for a Dipole Field

The full Hamiltonian for a dipole (37) looks rather intimidating.

We shall resort to the same technique we used to get a linear

map for a drift space, and expand the Hamiltonian to

second-order in the dynamical variables. As before, this is valid

as long as the dynamical variables remain small.

The second-order Hamiltonian is:

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2
−

h

β0
xδ −

δ2

2β2
0γ

2
0

(39)

We can tell a good deal already just by looking at this

Hamiltonian...
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2
−

h

β0
xδ +

δ2

2β2
0γ

2
0

(40)

Note the term (k0 − h)x. A term in the Hamiltonian that is first

order in one of the variables results in a zeroth-order term in

the map for the conjugate variable. In this case, we expect to

see a horizontal deflection – a change in px. This happens if

the curvature of the reference trajectory is not matched to the

magnetic field of the dipole. If k0 = h, then the curvature is

properly matched, and this term vanishes: a particle initially on

the reference trajectory and having the reference energy stays

on the reference trajectory through the dipole.
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2
−

h

β0
xδ +

δ2

2β2
0γ

2
0

(41)

Next, note the term 1
2hk0x

2. This looks like a “focusing term”

– recall the potential energy term in the Hamiltonian for an

harmonic oscillator. It appears that in moving through the

dipole, particles will oscillate about the reference trajectory.

This is perhaps unexpected. How do we understand this effect?
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Weak Focusing in a Dipole Field

In a uniform magnetic field, the trajectories of two particles

with some small initial offset will “oscillate” around each other.
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Dispersion in a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2
−

h

β0
xδ +

δ2

2β2
0γ

2
0

(42)

Finally, note the term h
β0

xδ. This contains the product of two

dynamical variables, the horizontal coordinate x, and the energy

deviation δ. The result of this term will be a coupling of the

horizontal and longitudinal motion. For example, there will be a

horizontal deflection depending on the particle’s energy. This is

called “dispersion”, and is a consequence of the fact that for

relativistic particles, the higher the particle’s energy, the higher

its mass, and the less effect there is on its trajectory from the

Lorentz force.
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Dynamical Map for a Dipole

Now we have the Hamiltonian for a dipole, and have considered

some of the dynamics we are likely to expect from it. What are

the solutions to the equations of motion?

Hamilton’s equations following from the Hamiltonian (39) are

essentially those for an harmonic oscillator. In the horizontal

plane, the solutions are:

x(s) = x(0) cosωs+ px(0)
sinωs

ω
+

(

δ(0)
h

β0
+ h− k0

)

(1− cosωs)

ω2

(43)

px(s) = −x(0)ω sinωs+ px(0) cosωs+

(

δ(0)
h

β0
+ h− k0

)

sinωs

ω

(44)

where:

ω =
√

hk0 (45)
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Dynamical Map for a Dipole

In the vertical plane, the solutions are:

y(s) = y(0) + py(0)s (46)

py(s) = py(0) (47)

which is the same as for a drift space: there is no weak

focusing in the vertical plane.

In the longitudinal plane, the solutions are:

z(s) = z(0)− x(0)
h

β0

sinωs

ω
− px(0)

h

β0

(1− cosωs)

ω2
+ δ(0)

s

β2
0γ

2
0

−

(

δ(0)
h

β0
+ h− k0

)

h

β0

(ωs− sinωs)

ω3
(48)

δ(s) = δ(0) (49)
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Transfer Matrix for a Dipole

Equations (43)–(49) constitute the dynamical map for a dipole.

Since the equations are linear, we can write them in the form

of a transfer matrix, R. Let us consider the case that the

reference trajectory is matched to the dipole strength, i.e.

ω = h = k0: this is the situation that we normally design in an

accelerator. In this case, the transfer matrix for a dipole of

length L is:

R =

























cosωL sinωL
ω 0 0 0 1−cosωL

ωβ0
−ω sinωL cosωL 0 0 0 sinωL

β0
0 0 1 L 0 0
0 0 0 1 0 0

−
sinωL
β0

−
1−cosωL

ωβ0
0 0 1 L

β2
0γ

2
0

−
ωL−sinωL

ωβ2
0

0 0 0 0 0 1

























(50)

Note that we have not yet included end effects - the edges of

the dipole have their own dynamical effects on the beam!
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Summary

To keep the values of the dynamical variables small in dipole

magnets, we use a curved reference trajectory. Generally, we

choose a reference trajectory that follows the path of a particle

having the reference momentum. We need to define the

variables in the curved coordinate system carefully: this can be

achieved using a canonical transformation.

The dynamics in dipoles displays some interesting features.

These include dispersion (variation in trajectory with energy)

and weak focusing. The effect of weak focusing in a horizontal

bending magnet is to keep the horizontal coordinate of a

particle close to the reference trajectory: in the horizontal

plane, particles oscillate around the reference trajectory with

period equal to the period of the circular motion in the field of

the magnet.
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