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Session 2

Basic Principles of Vacuum
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Aims

• To present some of the results of the 

kinetic theory of gases and to 

understand how they affect our thinking 

about vacuum

• To understand the differences between 

gas flow regimes

• To understand why conductance is an 

important concept in vacuum
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Kinetic Theory

• Consider gas as collection of independent small 

spheres in random motion, with average velocity 

• All collisions are elastic

Volume of box = V

Number of molecules = N

Number density = N
V


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Kinetic Theory

• Molecules follow a 

random walk

• Mean free path λ

Pressure 

(mbar)

Mean free 

path (m)

103 6 x 10-8

1 6 x 10-5

10-3 6 x 10-2

10-6 6

10-10 6 x 105

λ
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Kinetic Theory

The pressure, p, 

exerted on the walls of 

the vessel depends on  

the molecular 

impingement

rate or flux, J 



Basic Principles of Vacuum

Vacuum Science and Technology in Accelerators

Cockcroft Institute Lectures - 2010

R J Reid Lecture 2: 7 of 26

Maxwell-Boltzmann Distribution
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Some results from Kinetic Theory

Average kinetic energy 21 3

2 2
m kT 

8 8
145

kT RT T

m M M


 
  

p nkT

2

1

2 d n





Impingement Rate

Pressure
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Mean free path
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The Gas Laws

Boyle’s Law MpV NkT n RT 

Avogadro’s Number  6.02 x 1023

VM = 22.4 l at 273 K and 1.103 Pa

Dalton’s Law i

i

p p
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A Useful Exercise

From the equation for impingement rate, if we 

assume that every gas molecule which impinges 

on a surface sticks, prove that the time, τ, to 

form a monolayer of gas at a pressure p mbar 

on a surface (i.e. where there is one gas atom 

for each atom in the surface) is given by

610

p





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Gas scattering at a surface

• Knudsen’s cosine law

• When a gas molecule strikes a surface it 

remains on the surface sufficiently long to be 

fully accommodated

• Therefore when it leaves the surface, the 

distribution of velocities follows a cosine law
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Gas Flow

• There are several so-called gas flow 

regimes

• Continuum flow

• Fluid flow

• Short mean free path

• Molecule-molecule collisions are dominant

• Transitional flow

• Molecular flow

• Long mean free path

• No molecule-molecule collisions
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Gas Flow

Knudsen Number, Kn

Continuum flow Kn < 0.01

Transition flow 0.01 < Kn < 1

Molecular flow Kn > 1

Kn
d




 is the mean free path

d is a characteristic 

dimension of the flow 

system
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Molecular flow through a cylindrical pipe

For a long pipe

Q C p 

3 32
12.4

6

D RT D
C

L M L


 

l sec-1 (for N2 at 295K)

D,L in cm

For a short pipe

3

12.4
41

3

D
LC

D
L



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Molecular flow through a thin aperture

11.8
2

A

RT
C A A

M
 

l sec-1 (for N2 at 295K)

A in cm2
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Transmission probability

Define transmission probability, α, of a duct as 

the ratio of the flux of gas molecules at the exit 

aperture to the flux at the inlet aperture

out

in

J

J
 i.e.

Then, in general, the conductance, C, of the 

duct is given by

AC C

Where CA is the conductance of the entrance 

aperture.
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Transmission probability

α is independent of the dimensions of the duct and 

depends only on the ratio of length to transverse 

dimension and shape of the cross section of the 

duct. 

For a cylindrical pipe, 

L/D α

0 1

0.5 0.67

1 0.51

10 0.11

50 0.25
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Non cylindrical ducts

For ducts of non circular cross section (e.g. ellipses 

or rectangles) an empirical correction factor can be 

applied to the transmission coefficient
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Conductance of complex structures

Conductances in parallel

Conductances in series
1 1

i iC C


i

i

C C

But this ignores 

beaming
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Conductance of complex structures

For complex structures, e.g. bent pipes 

and vessel strings of varying cross 

section, transmission coefficients are 

most accurately computed by methods 

such as Monte-Carlo simulation
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Consider gas flowing through 

the conductance, C. The 

quantity of gas entering in unit 

time must be the same as that 

leaving. 

Upstream, this mass occupies a 

volume V1 and downstream V2

So P1V1 = P2V2

Volumetric flow rate is

Throughput is 

Gas flow: Throughput and Pumping Speed

P1>P2V

t





V
Q P

t





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Gas flow: Throughput and Pumping Speed

Volumetric flow rate is often referred  to as pumping speed, S, and 

has units of litre sec-1.

Thus

Conductance, C, is also given by 

C also has the units of litre sec-1.

Q SP

1 2( )Q C P P C p   
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Pumping in the molecular flow regime

The mechanism of pumping is that gas molecules 

find their way by means of a random walk into a 

“pump” where they are either trapped, ejected from 

the vacuum system or return to the vacuum system.

We can define the capture coefficient, s, of a pump 

as the probability of a molecule entering the pump 

being retained. Then the effective pumping speed of 

the pump, Se, is given by

where CE is the conductance of the entrance 

aperture of the pump.

e ES Cs
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Pumping in the molecular flow regime

In general a pump will be attached to the vessel 

which we wish to pump with a tube of some 

sort. If this tube has a conductance C, then the 

net pumping speed at the vessel will be given 

by 

The pumpdown will be given by

0

1 1 1

effS C S
 

0 exp
effS

P P t
V

 
  

 

0

0

eff

CS
S

C S



or
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Differential Pumping
A common requirement is to 

maintain part of a system at a 

relatively low pressure while 

another part is at a relatively high 

pressure (e.g. an ion gun and a 

target chamber). We need to 

calculate the pumping speed S2

required to maintain the pressure 

P2

Assume C is small, so

P1 >> P2

then 1
2

2 2 1

LCP CQ
S

P P S
 
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Pressure Regimes

Rough Vacuum Atmos – 10-3 mbar

Medium Vacuum 10-3 – 10-6 mbar

High Vacuum (HV) 10-6 – 10-9 mbar

Ultra High Vacuum (UHV) 10-9 – 10-11 mbar

Extreme High Vacuum (XHV) < 10-11 mbar


