Lecture 3: Quenching and a bit about hardware

Plan

- the quench process
- decay times and temperature rise
- quench protection schemes
- cryostats
- superconductor manufacture
- coil manufacture
- some superconducting accelerators

Magnetic stored energy

Magnetic energy density

 $E = \frac{B^2}{2\mu_0}$ at 5T $E = 10^7$ Joule.m⁻³ at 10T $E = 4 \times 10^7$ Joule.m⁻³

LHC dipole magnet (twin apertures) $E = \frac{1}{2}LI^2$ L = 0.12H I = 11.5kA $E = 7.8 \times 10^6$ Joules

the magnet weighs 26 tonnes

so the magnetic stored energy is equivalent to the kinetic energy of:-

26 tonnes travelling at 88km/hr

coils weigh 830 kg equivalent to the kinetic energy of:-

830kg travelling at 495km/hr

The quench process

• resistive region starts somewhere in the winding

at a **point - this is the problem!**

- it grows by thermal conduction
- stored energy ¹/₂LI² of the magnet is dissipated as heat
- greatest integrated heat dissipation is at point where the quench starts
- internal voltages much greater than terminal voltage (= V_{cs} current supply)
- maximum temperature may be calculated from the current decay time via the U(θ) function (adiabatic approximation)

The temperature rise function $\mathcal{U}(\theta)$

- Adiabatic approximation 1.6E+17 $J^{2}(T)\rho(\theta)dT = \gamma C(\theta)d\theta$ fuse blowing calculation J(T)= overall current density, 1.2E+17 T= time. = overall resistivity, $\rho(\theta)$ = density γ J(θ) A²sm⁻⁴ θ = temperature, $C(\theta)$ = specific heat, 8E+16 = quench decay time. T_{O} $\int_{0}^{\infty} J^{2}(T) dT = \int_{\theta_{0}}^{\theta_{m}} \frac{\gamma C(\theta)}{\rho(\theta)} d\theta$ 4E+16 $=U(\theta_m)$ dipole winding GSI001 $J_o^2 T_O = U(\theta_m)$ pure copper 0 100 200 300 400 500 0 • GSI 001 dipole winding is temp K 50% copper, 22% NbTi, 16% Kapton and 3% stainless steel
- NB always use **overall** current density

household fuse blows at 15A, area = 0.15mm² J = 100Amm⁻² NbTi in 5T J_c = 2500Amm⁻²

Calculating temperature rise from the current decay

Martin Wilson Lecture 3 slide5

Calculated temperature

- calculate the U(θ) function from known materials properties
- measure the current decay profile
- calculate the maximum temperature rise at the point where quench starts
- we now know if the temperature rise is acceptable
 but only after it has
 - happened!
- need to calculate current decay curve before quenching

Growth of the resistive zone

Quench propagation velocity 1

- resistive zone starts at a point and spreads outwards
- the force driving it forward is the heat generation in the resistive zone, together with heat conduction along the wire
- write the heat conduction equations with resistive power generation $J^2\rho$ per unit volume in left hand region and $\rho = 0$ in right hand region.

$$\frac{\partial}{\partial x} \left(kA \frac{\partial \theta}{\partial x} \right) - \gamma CA \frac{\partial \theta}{\partial t} - hP(\theta - \theta_0) + J^2 \rho A = 0$$

where: k = thermal conductivity, A = area occupied by a single turn, $\gamma =$ density, C = specific heat, h = heat transfer coefficient, P = cooled perimeter, $\rho =$ resistivity, $\theta_o =$ base temperature **Note:** all parameters are averaged over A the cross section occupied by one turn

assume x_t moves to the right at velocity v and take a new coordinate $\mathcal{E} = x - x_t = x - vt$

$$\frac{d^{2}\theta}{d\varepsilon^{2}} + \frac{v\gamma C}{k}\frac{d\theta}{d\varepsilon} - \frac{hP}{kA}(\theta - \theta_{0}) + \frac{J^{2}\rho}{k} = 0$$

Superconducting Accelerators: Cockroft Institute Jan 2013

Martin Wilson Lecture 3 slide8

Quench propagation velocity 2

when h = 0, the solution for θ which gives a continuous join between left and right sides at θ_t gives the *adiabatic propagation velocity*

$$v_{ad} = \frac{J}{\gamma C} \left\{ \frac{\rho k}{\theta_t - \theta_0} \right\}^{\frac{1}{2}} = \frac{J}{\gamma C} \left\{ \frac{L_o \theta_t}{\theta_t - \theta_0} \right\}^{\frac{1}{2}}$$

what to say about θ_t ?

- in a single superconductor it is just θ_c
- but in a practical filamentary composite wire the current transfers progressively to the copper
 - current sharing temperature $\theta_s = \theta_o + margin$
 - zero current in copper below θ_s all current in copper above θ_s

recap Wiedemann Franz Law $\rho(\theta).k(\theta) = L_{\alpha}\theta$

• take a mean transition temperature $\theta_s = (\theta_s + \theta_c)/2$

Superconducting Accelerators: Cockroft Institute Jan 2013

Martin Wilson Lecture 3 slide9

Quench propagation velocity 3

the resistive zone also propagates sideways through the inter-turn insulation (much more slowly) calculation is similar and the velocity ratio α is:

$$\alpha = \frac{v_{trans}}{v_{long}} = \left\{ \frac{k_{trans}}{k_{long}} \right\}^{\frac{1}{2}}$$

Some corrections for a better approximation

• because C varies so strongly with temperature, it is better to calculate an averaged C from the enthalpy change

$$C_{av}(\theta_g, \theta_c) = \frac{H(\theta_c) - H(\theta_g)}{(\theta_c - \theta_g)}$$

- heat diffuses slowly into the insulation, so its heat capacity should be excluded from the averaged heat capacity when calculating longitudinal velocity but not transverse velocity
- if the winding is porous to liquid helium (usual in accelerator magnets) need to include a time dependent heat transfer term
- can approximate all the above, but for a really good answer must solve (numerically) the three dimensional heat diffusion equation or, even better, measure it!

Resistance growth and current decay - numerical

Martin Wilson Lecture 3 slide11

Quench starts in the pole region

the geometry factor f_g depends on where the quench starts in relation to the coil boundaries

Quench starts in the mid plane

Martin Wilson Lecture 3 slide13

Computer simulation of quench (dipole GSI001)

Martin Wilson Lecture 3 slide14

Computer simulation of quench temperature rise

Martin Wilson Lecture 3 slide15

Methods of quench protection: 1) external dump resistor

Note: circuit breaker must be able toopen at full current against a voltage $V = I.R_p$

- detect the quench electronically
- open an external circuit breaker
- force the current to decay with a time constant

$$I = I_o e^{-\frac{t}{\tau}}$$
 where $\tau = \frac{L}{R_p}$

• calculate θ_{max} from

$$\int J^2 dt = J_o^2 \frac{\tau}{2} = U(\theta_m)$$

$$T_Q = \frac{\tau}{2}$$

Methods of quench protection: 2) quench back heater

- detect the quench electronically
- power a heater in good thermal contact with the winding
- this quenches other regions of the magnet, effectively forcing the normal zone to grow more rapidly
 - \Rightarrow higher resistance
 - \Rightarrow shorter decay time
 - \Rightarrow lower temperature rise at the hot spot

Note: usually pulse the heater by a capacitor, the high voltages involved raise a conflict between:-

- good themal contact
- good electrical insulation

method most commonly used in accelerator magnets 🗸

Methods of quench protection:

3) quench detection (a)

internal voltage after quench

$$IR_{Q} = -L\frac{dI}{dt} + V_{cs}$$

• not much happens in the early stages small $dI/dt \Rightarrow$ small V

V =

- but important to act soon if we are to reduce T_Q significantly
- so must detect small voltage
- superconducting magnets have large inductance ⇒ large voltages during charging
- detector must reject V = L dI/dt and pick up V = IR
- detector must also withstand high voltage as must the insulation

Martin Wilson Lecture 3 slide18

Methods of quench protection:

3) quench detection (b)

i) Mutual inductance

detector subtracts voltages to give

$$V = L\frac{di}{dt} + IR_Q - M\frac{di}{dt}$$

- adjust detector to effectively make L = M
- *M* can be a toroid linking the current supply bus, but must be linear no iron!

ii) Balanced potentiometer

- adjust for balance when not quenched
- unbalance of resistive zone seen as voltage across detector D
- if you worry about symmetrical quenches connect a second detector at a different point

Methods of quench protection: 4) Subdivision

- resistor chain across magnet cold in cryostat
- current from rest of magnet can by-pass the resistive section
- effective inductance of the quenched section is reduced
 - \Rightarrow reduced decay time
 - \Rightarrow reduced temperature rise
- current in rest of magnet increased by mutual inductance
 ⇒ quench initiation in other regions
 - often use cold diodes to avoid shunting magnet when charging it
 - diodes only conduct (forwards) when voltage rises to quench levels
 - connect diodes 'back to back' so they can conduct (above threshold) in either direction

LHC power supply circuit for one octant

- diodes allow the octant current to by-pass the magnet which has quenched
- circuit breaker reduces to octant current to zero with a time constant of 100 sec
- initial voltage across breaker = 2000V
- stored energy of the octant = 1.33GJ

Diodes to by-pass the main ring current

Installing the cold diode package on the end of an LHC dipole

Cryostat essentials

Manufacture of NbTi

- vacuum melting of NbTi billets
- hot extrusion of copper NbTi composite
- sequence of cold drawing and intermediate heat treatments to precipitate αTi phases as flux pinning centres
- for very fine filaments, must avoid the formation of brittle CuTi intermetallic compounds during heat treatment
 - usually done by enclosing the NbTi in a thin Nb shell
- twisting to avoid coupling recap lecture 2

Martin Wilson Lecture 3 slide24

Manufacture of filamentary Nb₃Sn wire

Coated YBCO tape

- YBCO has the best irreversibility field, but it is very sensitive to grain boundary misalignment
- the grains do not line up naturally they must be persuaded
- deposit YBCO on a substrate where the grains are aligned and the lattice roughly matches YBCO

YBCO coated tape at

Manufacture of Rutherford cable

Winding the LHC dipoles

Martin Wilson Lecture 3 slide29

Collars to support magnetic forces

- field quality depends on coil shape define accurately
- collars stamped from stainless steel plate a few mm thick

• alternate up/down and push in locking pins

Martin Wilson Lecture 3 slide30

Adding the iron

enclosed and compressed by the stainless steel helium vessel

LHC DIPOLE : STANDARD CROSS-SECTION

CERN AC/DI/MM - HE107 - 30 04 1999

Make the interconnections - electrical

Martin Wilson Lecture 3 slide33

Make interconnections - cryogenic

The Large Hadron Collider

cost of LHC ~ £6.2bn

City bonuses totalled £14bn in 2011 down on £19bn paid out in 2007

Martin Wilson Lecture 3 slide35

Facility for Antiproton and Ion Research FAIR

Winding curved dipoles for FAIR

Superconducting Accelerators: Cockroft Institute Jan 2013

Martin Wilson Lecture 3 slide37

Helios

compact electron synchrotron X-ray source for microchip lithography

- constant magnetic field so particles spiral out as their energy increases
- cw operation \Rightarrow high beam current
- large magnet but no ac loss

• cyclotrons are increasingly being used for cancer therapy

> design by Michigan State University, USA manufactured by ACCEL (Varian), Germany installed at Paul Scherrer Institut, Switzerland

Martin Wilson Lecture 3 slide39

$Oscar \Rightarrow Isotrace$

- 11 MeV superconducting cyclotron developed by Oxford Instruments
- proton beam used to produce short lived isotopes for use in positron emission tomography PET imaging

• design acquired by Alcen and marketed as the Isotrace cyclotron

Superconducting Accelerators: Cockroft Institute Jan 2013

Martin Wilson Lecture 3 slide40

Cancer therapy by charged particle beams

- photons (X-rays) deposit most energy at surface (skin)
- protons deposit most energy at depth
- adjust energy to make depth = tumour
- carbon ions are even better

Layout of a Proton therapy Facility

Concluding remarks

Quenching

- magnets store large amounts of energy during a quench this energy gets dumped in the winding
 ⇒ intense heating (*J* ~ fuse blowing)
 ⇒ possible death of magnet
- temperature rise and internal voltage can be calculated from the current decay time
- computer modelling of the quench process gives an estimate of decay time

 but must first decide where the quench starts
- if temperature rise is too much, must use a protection scheme active or passive
- protection of accelerator magnets is made much more difficult by their series connection

always do the quench calculations <u>before</u> testing the magnet \checkmark

Hardware

- helium doesn't want to be a liquid a lot of technology needed to keep it so cryogenics
- manufacture of NbTi and Nb3Sn filamentary wires is a routine industrial process ~ 10^{5} km per year
- BSCCO wires and textured YBCO tapes are a 'semi industrial' process $\sim 10^{2}$ km per year
- Rutherford cable used in all superconducting accelerators to date
- in recent years the largest accelerators have all been superconducting industrial scale of manufacture

thank you for your attention

Martin Wilson Lecture 3 slide43