Lecture 3: Quenching and a bit about hardware

Plan

• the quench process

• decay times and temperature rise

• quench protection schemes

• cryostats

• superconductor manufacture

• coil manufacture

• some superconducting accelerators

the most likely cause of death for a superconducting magnet
Magnetic stored energy

Magnetic energy density \[E = \frac{B^2}{2\mu_0} \]

at 5T \[E = 10^7 \text{ Joule.m}^{-3} \]

at 10T \[E = 4 \times 10^7 \text{ Joule.m}^{-3} \]

LHC dipole magnet (twin apertures) \[E = \frac{1}{2}LI^2 \]

\[L = 0.12 \text{ H} \]

\[I = 11.5 \text{ kA} \]

\[E = 7.8 \times 10^6 \text{ Joules} \]

the magnet weighs 26 tonnes

so the magnetic stored energy is equivalent to the kinetic energy of:

26 tonnes travelling at 88km/hr

coils weigh 830 kg
equivalent to the kinetic energy of:

830kg travelling at 495km/hr
The quench process

- resistive region starts somewhere in the winding at a point - this is the problem!
- it grows by thermal conduction
- stored energy \(\frac{1}{2}LI^2 \) of the magnet is dissipated as heat
- greatest integrated heat dissipation is at point where the quench starts
- internal voltages much greater than terminal voltage (\(= V_{cs} \) current supply)
- maximum temperature may be calculated from the current decay time via the \(U(\theta) \) function (adiabatic approximation)
The temperature rise function $U(\theta)$

- Adiabatic approximation

\[J^2(T) \rho(\theta) dT = \gamma C(\theta) d\theta \]

$J(T)$ = overall current density,
T = time,
$\rho(\theta)$ = overall resistivity,
γ = density
θ = temperature,
$C(\theta)$ = specific heat,
T_Q = quench decay time.

\[\int_0^\infty J^2(T) dT = \int_{\theta_o}^{\theta_m} \frac{\gamma C(\theta)}{\rho(\theta)} d\theta = U(\theta_m) \]

- GSI 001 dipole winding is
 50% copper, 22% NbTi,
 16% Kapton and 3% stainless steel

- NB always use overall current density

\[J^2 T_Q = U(\theta_m) \]

- household fuse blows at 15A,
 area = 0.15mm2
 $J = 100$Amm$^{-2}$
 NbTi in 5T
 $J_c = 2500$Amm$^{-2}$

Superconducting Accelerators: Cockroft Institute Jan 2013
Calculating temperature rise from the current decay

\[\int J^2 \, dt \text{ (measured)} \]

\[U(\theta) \text{ (calculated)} \]

Graphs showing the integral of current squared over time and the calculated potential vs. temperature.
Calculated temperature

- calculate the $U(\theta)$ function from known materials properties
- measure the current decay profile
- calculate the maximum temperature rise at the point where quench starts
- we now know if the temperature rise is acceptable - but only after it has happened!
- need to calculate current decay curve before quenching
Growth of the resistive zone

the quench starts at a point and then grows in three dimensions via the combined effects of Joule heating and thermal conduction
Quench propagation velocity 1

- resistive zone starts at a point and spreads outwards
- the force driving it forward is the heat generation in the resistive zone, together with heat conduction along the wire
- write the heat conduction equations with resistive power generation $J^2 \rho$ per unit volume in left hand region and $\rho = 0$ in right hand region.

\[
\frac{\partial}{\partial x} \left(kA \frac{\partial \theta}{\partial x} \right) - \gamma CA \frac{\partial \theta}{\partial t} - hP(\theta - \theta_o) + J^2 \rho A = 0
\]

where: $k =$ thermal conductivity, $A =$ area occupied by a single turn, $\gamma =$ density, $C =$ specific heat, $h =$ heat transfer coefficient, $P =$ cooled perimeter, $\rho =$ resistivity, $\theta_o =$ base temperature

Note: all parameters are averaged over A the cross section occupied by one turn

assume x_t moves to the right at velocity v and take a new coordinate $\varepsilon = x - x_t = x - vt$

\[
\frac{d^2 \theta}{d \varepsilon^2} + \frac{v \gamma C}{k} \frac{d \theta}{d \varepsilon} - \frac{hP}{kA} (\theta - \theta_o) + \frac{J^2 \rho}{k} = 0
\]
Quench propagation velocity 2

when \(h = 0 \), the solution for \(\theta \) which gives a continuous join between left and right sides at \(\theta_t \) gives the adiabatic propagation velocity

\[
V_{ad} = \frac{J}{\gamma C} \left(\frac{\rho k}{\theta_t - \theta_0} \right)^{1/2} = \frac{J}{\gamma C} \left(\frac{L_0 \theta_t}{\theta_t - \theta_0} \right)^{1/2}
\]

recap Wiedemann Franz Law \(\rho(\theta)k(\theta) = L_0 \theta \)

what to say about \(\theta_t \)?

- in a single superconductor it is just \(\theta_c \)
- but in a practical filamentary composite wire the current transfers progressively to the copper

- current sharing temperature \(\theta_s = \theta_o + \text{margin} \)
- zero current in copper below \(\theta_s \) all current in copper above \(\theta_s \)
- take a mean transition temperature \(\theta_s = (\theta_s + \theta_c)/2 \)
the resistive zone also propagates sideways through the inter-turn insulation (much more slowly) calculation is similar and the velocity ratio α is:

$$\alpha = \frac{v_{\text{trans}}}{v_{\text{long}}} = \left(\frac{k_{\text{trans}}}{k_{\text{long}}}\right)^{\frac{1}{2}}$$

Typical values

$v_{ad} = 5 - 20 \text{ ms}^{-1}$ \hspace{1cm} $\alpha = 0.01 - 0.03$

so the resistive zone advances in the form of an ellipsoid, with its long dimension along the wire

Some corrections for a better approximation

- because C varies so strongly with temperature, it is better to calculate an averaged C from the enthalpy change

$$C_{av}(\theta_g, \theta_c) = \frac{H(\theta_c) - H(\theta_g)}{(\theta_c - \theta_g)}$$

- heat diffuses slowly into the insulation, so its heat capacity should be excluded from the averaged heat capacity when calculating longitudinal velocity - but not transverse velocity

- if the winding is porous to liquid helium (usual in accelerator magnets) need to include a time dependent heat transfer term

- can approximate all the above, but for a really good answer must solve (numerically) the three dimensional heat diffusion equation or, even better, measure it!
Resistance growth and current decay - numerical

- Start resistive zone 1
- In time δt zone 1 grows $v \cdot dt$ longitudinally and $\alpha \cdot v \cdot dt$ transversely
- Temperature of zone grows by $\delta \theta_1 = J^2 \rho(\theta_1) \delta t / \gamma C(\theta_1)$
- Resistivity of zone 1 is $\rho(\theta_1)$
- Calculate resistance and hence current decay $\delta I = R / L \cdot \delta t$

- In time δt add zone n:
 - $v \cdot \delta t$ longitudinal and $\alpha \cdot v \cdot \delta t$ transverse
- Temperature of each zone grows by $\delta \theta_1 = J^2 \rho(\theta_1) \delta t / \gamma C(\theta_1)$, $\delta \theta_2 = J^2 \rho(\theta_2) \delta t / \gamma C(\theta_2)$, $\delta \theta_n = J^2 \rho(\theta_n) \delta t / \gamma C(\theta_n)$
- Resistivity of each zone is $\rho(\theta_1)$, $\rho(\theta_2)$, $\rho(\theta_n)$ resistance $r_1 = \rho(\theta_1) \cdot f_{g1}$ (geom factor), $r_2 = \rho(\theta_2) \cdot f_{g2}$, $r_n = \rho(\theta_n) \cdot f_{gn}$
- Calculate total resistance $R = \sum r_1 + r_2 + r_n.$ and hence current decay $\delta I = (I R / L) \delta t$

When $I \Rightarrow 0$ stop

Superconducting Accelerators: Cockroft Institute Jan 2013
Quench starts in the pole region

the geometry factor f_g depends on where the quench starts in relation to the coil boundaries
Quench starts in the mid plane
Computer simulation of quench (dipole GSI001)

![Graph showing current (A) over time (s) for measured, pole block, 2nd block, and mid block.](image)
Computer simulation of quench temperature rise

- Pole block
- 2nd block
- Mid block

Temperature vs. time graph:

- ***from measured***
- Pole block
- 2nd block
- Mid block
Methods of quench protection:

1) external dump resistor

- detect the quench electronically
- open an external circuit breaker
- force the current to decay with a time constant

\[I = I_o e^{-\frac{t}{\tau}} \quad \text{where} \quad \tau = \frac{L}{R_p} \]

- calculate \(\theta_{\text{max}} \) from

\[\int J^2 dt = J_o^2 \frac{\tau}{2} = U(\theta_{\text{m}}) \]

\[T_Q = \frac{\tau}{2} \]

Note: circuit breaker must be able to open at full current against a voltage

\[V = I.R_p \] (expensive)
Methods of quench protection:

2) quench back heater

- detect the quench electronically
- power a heater in good thermal contact with the winding
- this quenches other regions of the magnet, effectively forcing the normal zone to grow more rapidly
 \[\Rightarrow \text{higher resistance} \]
 \[\Rightarrow \text{shorter decay time} \]
 \[\Rightarrow \text{lower temperature rise at the hot spot} \]

Note: usually pulse the heater by a capacitor, the high voltages involved raise a conflict between:
- good thermal contact
- good electrical insulation

method most commonly used in accelerator magnets
Methods of quench protection:

3) quench detection (a)

- not much happens in the early stages - small $dI/dt \Rightarrow$ small V
- but important to act soon if we are to reduce T_Q significantly
- so must detect small voltage
- superconducting magnets have large inductance \Rightarrow large voltages during charging
- detector must reject $V = LdI/dt$ and pick up $V = IR$
- detector must also withstand high voltage - as must the insulation

internal voltage after quench

$$V = IR_Q = -L \frac{dI}{dt} + V_{cs}$$
Methods of quench protection:

3) quench detection (b)

i) Mutual inductance

detector subtracts voltages to give

\[V = L \frac{di}{dt} + IR_Q - M \frac{di}{dt} \]

- adjust detector to effectively make \(L = M \)
- \(M \) can be a toroid linking the current supply bus, but must be linear - no iron!

ii) Balanced potentiometer

- adjust for balance when not quenched
- unbalance of resistive zone seen as voltage across detector D
- if you worry about symmetrical quenches connect a second detector at a different point
Methods of quench protection: 4) Subdivision

- resistor chain across magnet - cold in cryostat
- current from rest of magnet can by-pass the resistive section
- effective inductance of the quenched section is reduced
 ⇒ reduced decay time
 ⇒ reduced temperature rise
- current in rest of magnet increased by mutual inductance
 ⇒ quench initiation in other regions

- often use cold diodes to avoid shunting magnet when charging it
- diodes only conduct (forwards) when voltage rises to quench levels
- connect diodes 'back to back' so they can conduct (above threshold) in either direction
LHC power supply circuit for one octant

- diodes allow the octant current to by-pass the magnet which has quenched
- circuit breaker reduces to octant current to zero with a time constant of 100 sec
- initial voltage across breaker = 2000V
- stored energy of the octant = 1.33GJ
Diodes to by-pass the main ring current

Installing the cold diode package on the end of an LHC dipole
Cryostat essentials

- Current supply leads
- High vacuum
- Radiation shield
- Liquid helium
- Magnet
- Mechanical supports
- Beam tube
- Feeds to next magnet
Manufacture of NbTi

- vacuum melting of NbTi billets
- hot extrusion of copper NbTi composite
- sequence of cold drawing and intermediate heat treatments to precipitate αTi phases as flux pinning centres
- for very fine filaments, must avoid the formation of brittle CuTi intermetallic compounds during heat treatment
 - usually done by enclosing the NbTi in a thin Nb shell
- twisting to avoid coupling - recap lecture 2
Manufacture of filamentary Nb_3Sn wire

Because Nb_3Sn is a brittle material, it cannot be drawn down in final form. Instead we must draw down pure niobium in a matrix of bronze (copper tin).

At final size the wire is heated (~700°C for some days) tin diffuses through the Cu and reacts with the Nb to form Nb_3Sn.

Unfortunately the remaining copper still contains some tin and has a high resistivity. We therefore include 'islands' of pure copper surrounded by a diffusion barrier.
Coated YBCO tape

- YBCO has the best irreversibility field, but it is very sensitive to grain boundary misalignment
- the grains do not line up naturally - they must be persuaded
- deposit YBCO on a substrate where the grains are aligned and the lattice roughly matches YBCO
YBCO coated tape at SuperPower Inc.
Manufacture of Rutherford cable

'Turk's head' roller die

puller

finished cable

superconducting wires

Superconducting Accelerators: Cockroft Institute Jan 2013
Winding the LHC dipoles

photo courtesy of Babcock Noell
Collars to support magnetic forces

- Field quality depends on coil shape - define accurately
- Collars stamped from stainless steel plate a few mm thick

- Alternate up/down and push in locking pins
Adding the iron

enclosed and compressed by the stainless steel helium vessel
Make the interconnections - electrical
Make interconnections - cryogenic
The Large Hadron Collider

Cost of LHC ~ £6.2bn

City bonuses totalled £14bn in 2011 down on £19bn paid out in 2007

Superconducting Accelerators: Cockroft Institute Jan 2013
Facility for Antiproton and Ion Research FAIR

FAIR will accelerate a wide range of ions, with different masses and charges. So, instead of beam energy, we talk about the bending power of the rings as 100T.m and 300T.m (field x bend radius)
Winding curved dipoles for FAIR
Helios

compact electron synchrotron X-ray source for microchip lithography
Cyclotrons

- constant magnetic field so particles spiral out as their energy increases
- cw operation \(\Rightarrow\) high beam current
- large magnet but no ac loss

- cyclotrons are increasingly being used for cancer therapy
Oscar \Rightarrow Isotrace

- 11 MeV superconducting cyclotron developed by Oxford Instruments
- proton beam used to produce short lived isotopes for use in positron emission tomography PET imaging
- design acquired by Alcen and marketed as the Isotrace cyclotron
Cancer therapy by charged particle beams

- photons (X-rays) deposit most energy at surface (skin)
- protons deposit most energy at depth
- adjust energy to make depth = tumour
- carbon ions are even better
Layout of a Proton therapy Facility

- **Cyclotron**: produces 250MeV protons
- **Beam transport**: selects the right energy and guides proton beam to patient
- **Patient treatment gantry**: scans the beam over the patient
Concluding remarks

Quenching

• magnets store large amounts of energy - during a quench this energy gets dumped in the winding
 ⇒ intense heating \((J \sim \text{fuse blowing})\) ⇒ possible death of magnet

• temperature rise and internal voltage can be calculated from the current decay time

• computer modelling of the quench process gives an estimate of decay time
 – but must first decide where the quench starts

• if temperature rise is too much, must use a protection scheme - active or passive

• protection of accelerator magnets is made much more difficult by their series connection

Always do the quench calculations before testing the magnet ✓

Hardware

• helium doesn't want to be a liquid - a lot of technology needed to keep it so - cryogenics

• manufacture of NbTi and Nb3Sn filamentary wires is a routine industrial process \(\sim 10^5\) km per year

• BSCCO wires and textured YBCO tapes are a ‘semi industrial’ process \(\sim 10^2\) km per year

• Rutherford cable used in all superconducting accelerators to date

• in recent years the largest accelerators have all been superconducting – industrial scale of manufacture

Thank you for your attention